

Electrical Engineering Department EE 410 Digital Image Processing (052) Instructor: Dr. Omar A. Al-Swailem

Due Monday, March 13th, 2006

Q 1: In the following statements, write True [T] or False [F] in the spaces provided. Correct Answer = 2.0 point, No Answer = 0.0 point, Wrong Answer = -1 point.

(1) Spatial resolution of a digital image is determined mainly by the sampling factor.
(2) In general, selecting a suitable value for spatial and gray level resolutions depends on the amount of activity, details, and application of the image
(3) The masking operation on an image is a neighborhood processing technique.
(4) In image averaging technique, the availability of more images helps in decreasing the variability of pixel values at each location.
(5) In a digital image, reduction in spatial resolution results in false contours while reduction in quantization levels can exhibit a checkerboard appearance.

Q 2: Compute the number of bits that represents an image that has 64 gray levels and a size of 512×512 pixels? What is the time (in seconds) required to transmit this image over a 14.4 kbits/sec modem?

Q 3

(a) Discuss the effects of applying the following 3×3 masks to the given image.

(b) Discuss the different effects between applying a 3×3 smoothing and a 3×3 median filters to the image. Show your work.

Ma	Mask 1			ľ	Mask	x 2	Image
-1	-1	-1		-1	0	1	
0	0	0		-1	0	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1	1	1		-1	0	1	1 1 1 10 10 10

Q 4: Give <u>a brief</u> definition for False Contouring and Checkerboard pattern and indicate their origin.

Q 5: A 5×5 smoothing mask is applied to a rectangular shape of size 4×2 pixels in the middle of an image. What would be the blurring size (in pixels) of this shape in the smoothed image?

Q 6: Determine if the two regions shown R_1 and R_2 , (R_1 is the left region surrounded by the dotted line, and R_2 is the right region surrounded by the dotted line.), are 4-, 8-, and/or m-connected, for the cases, **Explain** and justify your answers:

(i) $V = \{0,1,2\}$, (ii)	V={	[1]							
		2	1	2	2	1	1	2	1
	1	2	1	2	(Γ)) 1	1	2	1
	1	2	1	2	$\widetilde{2}$	0	1	2	1
	1	2	1	2	0	2	1	2	1
	1	2	1	2	2	2	1	2	1

Consider V= $\{0,1,2\}$ Compute D_e , D_4 , and D_8 , between the two circled pixels shown?