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Abstract: This paper presents a novel hybrid Tabu Search (TS) Subtractive Clustering (SC) based Neuro-
Fuzzy Inference System (ANFIS) design for fault detection. The proposed model uses the TS algorithm
to find optimal parameters for Subtractive Clustering (SC) based ANFIS. The developed TS-SC-ANFIS
scheme provides critical information about the presence or absence of a fault. The TS being an efficient
local search technique, shows remarkable success in finding optimal cluster parameters which proves
instrumental in ANFIS training, making it efficient in fault detection. The proposed scheme is evaluated
on a laboratory scale coupled-tank system. Fault detection results presented at the end of the paper using
fresh set of data show successful diagnosis of most incipient leakage faults in the coupled-tank system.
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1. INTRODUCTION

In the process control industry, fault is an undesirable factor in
any process. It affects the efficiency of system operation and
reduces economic benefit to the industry. Early detection and
diagnosis of faults in mission critical systems becomes highly
crucial for preventing failure of equipment, loss of productivity
and profits, management of assets, and to cause reductions in
plant shutdowns. Successful fault diagnosis in process control
equipments using intelligent fault classification techniques can
result in predicting equipment life and detecting malfunctions
and potential causes of failure well ahead of time. This can
lead to prevention of expensive breakdowns and potentially
fatal casualties, and can therefore increase the lifetime of the
equipment and yield economic benefits. The importance of fault
classification and detection is therefore non-trivial.

Artificial intelligence (AI) techniques have seen an increased
interest in solving fault diagnosis problems. Application of
Neural Networks based AI techniques for fault diagnosis have
been used for power transformers by Ping et al. (2005, 2009),
and for rotating machines by Dou et al. (2007) and Wei et al.
(2007). An important requirement for training an AI system
that is required to predict the behaviour of the plant is optimal
values of its key parameters during its training. With the rapid
rise of heuristic algorithms, researchers have found more reli-
able means to find optimal solutions to AI learning problems.
Genetic Algorithm (GA), as seen in Dou et al. (2007), Wei et al.
(2007) and Elhadef and Ayeb (2000), Particle Swarm Optimi-
sation (PSO) as seen in Hongxia et al. (2009), and Grid Search

based methods as described in Duan and Zivanovic (2009) are
among several others that have seen an increased interest in
solving AI based fault diagnostic problems.

In the recent past, Tabu Search (TS) algorithm has surfaced as a
highly promising heuristic algorithm for solving combinatorial
optimisation problems. It was proposed in detail in Glover
(1989, 1990a, 1990b, 1993). TS uses a memory of search
history to prevent cycling and entrapment in local optima. It has
been shown in the literature that, under certain conditions, the
TS algorithm can yield global optimal solution with probability
one (Glover, 1990b). In the recent past, TS has been used to
solve a number of optimisation problems in the power and
process control industry, however, to the best of the authors’
knowledge, the use of TS for fault diagnosis in processes has
remained scarce to date.

This paper presents a new Adaptive-Neuro-Fuzzy Inference
System (ANFIS) design using TS based Subtractive Clustering
(SC). TS is used to find optimal values of SC parameters. A
benchmark laboratory scale two-tank model is used for data
collection over a lengthy period of time. Fault is induced in
the process during data collection and inputs and outputs are
recorded. Once the data is collected, the proposed TS-SC-
ANFIS is trained using this sampled data. The developed TS-
SC-ANFIS is validated using a fresh set of data and results
are presented in this paper to evaluate the performance of the
proposed scheme.



The paper is arranged as follows. Section 2 describes the fault
detection problem at hand and briefs the reader about the
experimental setup, the model of the process, and the way
the data was collected. Section 3 describes the formulation of
the problem into an optimisation problem and takes a look at
the selection of a proper cost function. Section 4 describes
the Tabu-Search algorithm in detail. Section 5 takes a look
at simulation results and section 6 seeks to draw concluding
remarks.

2. FAULT DIAGNOSIS PROBLEM STATEMENT

2.1 Process description and data collection

A Benchmark laboratory-scale two-tank process control system
has been used to collect data at a sampling rate of 50 millisec-
onds. The system is considered as a multi-input single-output
(MISO) process with hydraulic height and liquid output flow-
rate of the second tank being the two inputs while leakage fault
level on a discrete scale of 1 to 4 being the output. The proposed
scheme is shown in Figure 1. The objective of the benchmark
dual-tank system is to reach a reference height of 200ml in the
second tank. To achieve this objective, a Proportional Integral
(PI) controller works in a closed loop configuration. Data is
collected by introducing leakage fault in the closed loop system.
This is done through the pipe clogs of the system using drainage
valve between the two tanks. The PI controller tends to treat the
introduced fault as a disturbance and acts to suppress it. The
closed-loop nature of the experiment also tends to suppress the
faults introduced in the system, thereby making it more difficult
to detect these faults.

2.2 Model of the Coupled Tank System

The physical system under evaluation is formed of two tanks
connected by a pipe. The leakage is simulated in the tank
by opening the drain valve between the two tanks. A DC
motor-driven pump supplies the fluid to the first tank and a PI
controller is used to control the fluid level in the second tank by
maintaining the level at a specified level, as shown in Figure 4.

A step input is applied to the dc motor-pump system to fill
the first tank. The opening of the drainage valve introduces a
leakage in the tank. Leakage faults are thus introduced and the
liquid height in the second tank, H2, and the flow rate, Q0, are
both measured. The National Instruments LabView� package
is employed to collect the data. The model relating the input
control signal u to the motor, and the flow Qi is given below.

Qi =−amQi + bmφ(u), (1)
where am and bm are the parameters of the motor-pump system
and φ(u) is a dead-band and saturation-type of nonlinearity. It
is assumed that the leakage Ql occurs in tank 1 and is given by

Ql =Cdl

√
2gH1. (2)

With the inclusion of the leakage, the liquid level system is
modelled by

A1
dH1

dt
= Qi −C12φ(H1 −H2)−Clφ(H1), (3)

A2
dH2

dt
=C12φ(H1 −H2)−C0φ(H2), (4)

where φ(.) = sign(.)
√

2g(.),Ql = Clφ(H1) is the leakage flow
rate, Q0 = C0φ(H2) is the output flow rate, H1 is the height

Fig. 2. (a) The two tank system interfaced with the LabView�
through a DAQ and the amplifier for the magnified voltage,
(b) The Labview setup of the apparatus including the
circuit window and the block diagram of the experiment.

of the liquid in tank 1, H2 is the height of the liquid in tank
2, A1 and A2 are the cross-sectional areas of the 2 tanks,
g = 980cm/sec2 is the gravitational constant, C12 and C0 are
the discharge coefficient of the inter-tank and output valves
respectively. The model of the two-tank fluid control system
is of second order and is nonlinear with smooth square-root
type nonlinearity. For design purposes, a linearised model of
the fluid system is required and is given as

dh1

dt
= b1qi − (a1 +α)h1 + a1h2, (5)

dh2

dt
= a2h1 − (a2 −β)h2, (6)

where h1 and h2 are the increments in the nominal (leakage
free) heights H0

1 and H0
2

b1 =
1
A1

, a1 =
Cdb

2
√

2g(H0
1 −H0

2 )
,β =

C0

2
√

2gH0
2

, (7)

a2 = a1 +
Cd0

2
√

2gH0
2

,α =
Cdl

2
√

2gH0
1

. (8)

The parameter α indicates the amount of leakage. A PI con-
troller, with gains kP and kI is used to maintain the level of
Tank 2 at the desired reference input r.

ẋ3 = e = r− h2, (9)

u= kPe+ kIx3 (10)

The state space model is given by:



Fig. 1. Proposed Scheme

x= [ h1 h3 x3 qi ]
T
,

A=

⎡
⎢⎣
−a1 −α a1 0 b1

a2 −a2 −β 0 0
0 −1 0 0

−bmkP 0 bmkI −am

⎤
⎥⎦ ,

B= [ 0 0 1 bmkP ]
T
,

C = [ 1 0 0 0 ] ,

where qi, ql , q0, h1 and h2 are the increments in Qi, Ql ,
Q0, H0

1 and H0
2 respectively, the parameters a1 and a2 are

associated with linearisation whereas the parameters α and β
are respectively associated with the leakage and the output flow
rate, i.e. ql = αh1, q0 = βh2.

3. ANFIS BASED FAULT DIAGNOSIS USING
SUBTRACTIVE CLUSTERING

Subtractive Clustering (SC) technique is used to formulate an
ANFIS. The SC algorithm seeks optimal data-point by defining
a cluster centre based on the density of surrounding data points
as shown in the Figure 3. A radius for each cluster is chosen.
All the data points within the radial distance of this point are
then removed in order to determine the next data cluster and
its centre. This process is repeated until all the data is within
radial distance of a cluster centre. Given proper cluster radii,
The SC algorithm finds optimal data point to define a cluster
centre based on the density of surrounding data points.

An objective function J defined below is proposed.

J =
N

∑
n=1

(ŷ(n)− y(n))2

N
, (11)

where N denotes the number of data points, ŷ(n) and y(n) de-
note the nth sample of predicted and actual outputs respectively.
The problem constraints are the bounds on the size of radii for
the two inputs and one output. The problem can be formulated
as
minimise J, subject to the constraints

r min
i ≤ ri ≤ r max

i , i = 1,2,3. (12)

Subtractive Clustering (SC) based ANFIS

Input/Output data-sets

SC applied on initial data to extract a set of rules

Generation of initial FIS using SC

Generated FIS fed as input to ANN

Generation of SC-ANFIS

Fig. 3. Flowchart for SC-ANFIS

The minimum value of r min
1,2,3 is set to 0.1 while the maximum

values are set to half the range of respective inputs and outputs
giving r max

1 = 90,r max
2 = 2,andr max

3 = 1.5. The TS algorithm is
applied to this problem in order to find optimal or near optimal
value of r1, r2, and r3.

The importance of a proper cluster radius can be gauged from
Figure 8. The histogram in Figure 8 shows mean squared output
error on a scale of 1 to 4 for SC-ANFIS based fault prediction
compared with TS-SC-ANFIS based fault prediction performed
on a fresh set of data. The first two bars show the output
error of SC-ANFIS based prediction with randomly selected
cluster radii within the range defined above. The third bar shows
TS optimised SC-ANFIS. It is seen that TS-SC-ANFIS shows
considerable improvement over SC-ANFIS.

4. THE TABU SEARCH ALGORITHM

Tabu Search is an iterative heuristic algorithm used for solving
combinatorial optimisation problems. Starts from any initial so-
lution, the TS algorithm attempts to determine a better solution.
The TS algorithm was proposed in its present form by Glover.



Fig. 4. Closed loop Two-tank setup.

Owing to its improved performance in solving optimisation
problems, it has now become an established approach that is
finding increased interest among researchers in different fields.
Along with other heuristic search approaches such as Genetic
Algorithm, TS has been exhibited promising results in the area
of optimisation. TS is noted for its ability to avoid entrapment
in local optimal solution. It does so by preventing cycling using
flexible memory of search history. The basic elements of TS are
briefly stated and defined as follows.

A. Current solution, xcurrent
It is a set of the optimised parameter values at any iteration.

B. Moves
They characterise the process of generating trial solutions that
are related to x current.

C. Trial solutions xtrial
These are a limited set of trial solution out of a set of all possible
trial solutions in the neighbourhood of x current.

D. Tabu list
A Tabu list is a list of forbidden solutions that cannot be used
as x current. The TS algorithm maintains a sizeable list of Tabu
solutions, and each time a solution is set as x current, it is
added to the Tabu list to prevent repetition of solutions and
hence entrapment in a local optimum. When the Tabu list is
full, the oldest entry in the list is removed and new solutions
are added to the list. The Tabu list size plays a vital role in the
performance of TS algorithm. Generally, it is useful to watch
out for the occurrence of cycling when the size of Tabu list is
too small, and to watch for performance degradation when the
size of Tabu list is too large causing too many forbiddance on
moves. A Tabu list size centred on 7 is a good choice in several
applications (Glover, 1990).

E. Aspiration criterion (Level)
Aspiration criteria are rules that override Tabu restrictions. If
a certain move is forbidden by Tabu restriction, the aspiration

criterion, if fulfilled, can make this move allowable. Different
forms of aspiration criteria are used in the literature (Glover
1989, 1990a, 1990b, 1993). The AC used in the proposed
technique is to override the Tabu status of a move if it yields
a solution which has better objective function, J, than the one
obtained earlier with the same move.

F. Stopping criteria
These are rules that provide guidance on stopping the search.
The search for optimal parameters can be terminated under
multiple criteria like (a) completion of predefined maximum
number of iterations, or (b) stagnation in improvement of
objective function. In the present work, the search terminates
if a maximum of 50 iterations is reached, or if no improvement
is seen over 30 iterations. The TS algorithm can be described
as:

Step 1
Set the iteration counter k = 0 and randomly generate an initial
solution xinitial. Set xinitial = xcurrent = xbest .

Step 2
Generate set of trial solutions x trials in the neighbourhood
of the current solution. Sort the generated trial solutions in
ascending order of their objective function values. Since the
problem is a minimisation one, the top most solution is the best
solution x trials 1.

Step 3
If J(x1

trials) > J(xbest), jump to step 4, otherwise, xbest = xi
trial

for i = 1, and then jump to step 4.

Step 4
Scan the Tabu list for a possibility of presence of xi

trial . If it is
not on the Tabu list, set xcurrent = xi

trial , and jump to step 7. If it
is on the Tabu list, go to step 5.

Step 5
If aspiration criterion is fulfilled, override the Tabu restriction,



update aspiration level, set xcurrent = xi
trial , and go to step 6,

otherwise, set i = i+ 1, and go to step 4.

Step 6
Check stopping criterion. If criterion is not satisfied, set k = k+
1, and go back to step 2.

5. TRAINING AND PERFORMANCE OF TS-SC-ANFIS

Tabu Search based SC-ANFIS is developed. The TS algorithm
is applied on the above defined problem to search for optimal
radii of data clusters. The number of trial solutions is kept 15,
the size of Tabu-list is kept 20, and constraints on the radii,
as defined above, are observed strictly. The obtained optimal
values for the three radii are r1 = 0.3171, r2 = 0.1549, and
r3 = 0.8324. The convergence of objective function is shown
in Figure 6. The TS algorithm converges to almost the same
values of radii for every run of the algorithm. Cost function
convergence to optimal or near optimal solution regardless of
initial solution demonstrates the robustness of the algorithm.
Simulation result for optimal radii is shown in Figure 7.

TS based SC-ANFIS

Data initialisation, pre-processing and normalisation

SC-ANFIS with different cluster radii

Evaluation using cost function

TS

Generation of optimial TS-SC-ANFIS

Fig. 5. Flowchart for Hybrid TS-SC-ANFIS Scheme

6. CONCLUSION

The prediction results in Figure 7 show reasonably well perfor-
mance of developed TS-SC-ANFIS. Except for the data points
with very small faults at the beginning of validation data, the
developed TS-SC-ANFIS has predicted most fault levels cor-
rectly. It is strongly believed that many other parameters also
require optimal tuning for improvement of prediction results,
and it is among sincere intentions of the authors to work to-
wards a much improved TS-SC-ANFIS in future.
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