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Abstract:

Thispaper presents anew method for modeling of Hammerstein systems. The devel oped i dentification method

uses state-space model in cascade with radia basis function (RBF) neural network. A recursive algorithm
is developed for estimating neural network synaptic weights and parameters of the state-space model. No
assumption on the structure of nonlinearity ismade. The proposed algorithm works under the weak assumption
of richness of inputs. The problem of modeling is solved as an optimization problem and Particle Swarm
Optimization (PSO) is used for neura network training. Performance of the algorithm is evaluated in the
presence of noisy data and Monte-Carlo simulations are performed to ensure reliability and repeatability of

the identification technique.

1 INTRODUCTION

The Hammerstein Model belongsto the family of
block oriented models and is made up of a memo-
ryless nonlinear part followed by a linear dynamic
part as shown in Figure 1. It has been known to ef-
fectively represent and approximate several nonlinear
dynamic industrial processes, for example pH neu-
tralization process (Fruzzetti, K.P, Palazoglu A., Mc-
Donald, K.A., 1997), heat exchanger (Eskinat, E.,
Johnson, S.H., Luyben, W.L., 1991), nonlinear filters
(Haddad, A.H., Thomas, J.B., 1968), and water heater
(Abonyi, 1., Nagy, L., Szeifert, E., 2000).
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Figure 1: Block diagram of a Hammerstein model.

Linear
Dynamics

A lot of research has been carried out on identi-

fication of Hammerstein models. Hammerstein Sys-
tems can be modeled by employing either nonpara-
metric or parametric models. Nonparametric mod-
els represent the system in terms of curves result-
ing from expansion of series such as the Volterra se-
ries or kernel regression. Parametric representations
are more compact having fewer parameters. Notable
parametric identification techniques can be found in
(Narendra, K.S., Galman, P, 1966), (Billings, S.,
1980), (Al-Duwaish, H., 2001), (Vorés, J., 2002),
(Wenxiao, Z., 2007) and in references therein. Non-
parametric identification techniques can be found in
severa papers including, but not limited to those of
(Greblicki, W., 1989), (Al-Duwaish, H., Nazmulka-
rim, M., Chandrasekar, V., 1997), (Zhao, W., Chen,
H., 2006).

Recently, subspace identification has emerged as
a well known method for identification of linear
systems. It is computationally less complicated as
compared to conventional prediction error methods
(PEM), does not require initial estimate of a canon-
ical model like PEM and, is easily extendable to sys-
tems having multiple inputs and outputs (Katayama,
T., 2005). However, its useis restricted mostly to lin-
ear systems. To make use of this, attempts have been



made to extend subspace linear identification to non-
linear systems such as Wiener and Hammerstein sys-
tems including use of static nonlinearity in the feed-
back path (Luo, D., Leonessa, A., 2002), assuming
known nonlinearity structures (Verhaegen, M., West-
wick, D., 1996), and using least squares support vec-
tor machines (Goethals, 1., Pelckmans, K., Suykens,
JA K., Moor, B.D., 2005).

In this paper, anew subspace based method is pro-
posed for Hammerstein model identification, which
uses radial basis function (RBF) network in cascade
with a state-space model. A recursive algorithm is
developed for parameter estimation of the two sub-
systems.

The paper is arranged as follows. Section 2 looks
at the model structure proposed in this work. Section
3 takes a detailed look at the proposed identification
scheme. Section 4 describes the proposed algorithm
in detail and section 5 includes numerical examples,
their results, and analysis.

Throughout this paper, the following convention
is used for notations. Lower case variables represent
scalars. Lower case bold variables represent vectors.
Upper case bold |etters denote matrices. The only ex-
ception to this conventionis the choice of variablefor
the cost function, where amore conventional J isused
to define the cost function.

2 PROPOSED MODEL
STRUCTURE

The proposed model structure in this work uses state-
space model to estimate the linear dynamic part. The
memoryless nonlinear part is modeled using an RBF
network. An RBF network is an effective type of neu-
ral network that has proved useful in applicationslike
function approximation and pattern recognition. A
typical three layer RBF network is shown in Figure
2. The input layer connects the network to its en-
vironment. The second layer, known as the hidden
layer, performs a fixed nonlinear transformation us-
ing basis functions. The output layer linearly weighs
the response of the network to the output (Haykin,
S., 1999). The external inputs to the system u(t) are
fed to the RBF network, which generates the outputs
v(t). Considering an RBF network having g number
of neuronsin the hidden layer, the basis vector is

() = [ofju(t) —c1l ---dllu(t) — cqll],

where ¢; is the chosen center for the it neuron, ||. ||
denotes norm that is usually Euclidean, and o; is
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Figure 2: An RBF neura network with g neurons in the
hidden layer.

the nonlinear radial basis function for the it" neuron,
given by

_ a2
o) —ep (-0 ).

where ¢ is the spread of the Gaussian function ¢; (t).
If the set of output layer weights of the RBF network
isgiven by

W= [Wl W2"'Wq],

the RBF output v(t) is given by
v(t) =wo' (t). 1)

Considering a system with a single input and output,
the output of the RBF network v(t) in turn acts asin-
put to the state-space model tranglating it into final
output y(t). The equation for y(t) is given by discrete
time state-space equation

X(t+1) = Ax(t)+Bv(t)+w(t), )
y(t) = Cx(t)+Dv(t)+z(t), ©)

where v(t) and y(t) are input and output of the state-
space system at discrete timeinstant (t), z(t) and w(t)
are the measurement and process noise.

3 PROPOSED IDENTIFICATION
SCHEME

The problem of Hammerstein modeling is therefore
formulated asfollows. Given aset of mmeasurements
of noisy inputs u(t) and outputs y(t), the problem is
reduced to finding the weights of the RBF network
and the matrices of the state-space model.

For the estimation of state-space matrices, N4SID
numerical algorithm for subspace identification



(Overschee, PV., Moor, B.D., 1994) is used. The al-
gorithm determinesthe order n of the system, the sys-
tem matrices A e RN BeR™P, CeR™" D¢
R <P, covariance matrices Q e R ™", Re R1*L, S
e R ™1, and the Kalman gain matrix K, where p de-
notes the number of inputs and r denotes the number
of outputs of the system, without any prior knowledge
of the structure of the system, given that alarge num-
ber of measurements of inputs and outputs generated
by the unknown system of equations (2) and (3) is
provided. In N4SID, Kalman filter states are first es-
timated directly from input and output data, then the
system matrices are obtained (Overschee, PV., Moor,
B.D., 1994).

For Hammerstein identification problem, it is de-
sired that the error between the output of the actual
system, and that of the estimated model be mini-
mized. Therefore, in away this becomes an optimiza-
tion problem where a cost index is to be minimized.
For the system described in equations (1)-(3), the cost
index is given by

=T =Sy -02E @

where y(t) and y(t) are the outputs of the actual and
estimated systems at time instant (t). The weights of
the RBF network are therefore updated so as to mini-
mize this cost index. For this purpose, particle swarm
optimization (PSO) used.

PSO is a heuristic optimization algorithm which
works on the principle of swarm intelligence
(Kennedy, J., Eberhart, R., 2001). It imitates animals
living in aswarm collaboratively working to find their
food or habitat. In PSO, the search is directed, as ev-
ery particle position is updated in the direction of the
optimal solution. It is robust and fast and can solve
most complex and nonlinear problems. It generates
globally optimum solutions and exhibits stable con-
vergence characteristics. In thiswork, PSO is used to
train the RBF network. Each particle of the swarm
represents a candidate value for the weight of the out-
put layer of RBF network. The fitness of the parti-
clesisthereciproca of the cost index given in equa-
tion (4). Hence, the smaller the sum of output errors,
the more fit are the particles. Based on this principle,
PSO updates the position of all the particles moving
towards an optimal solution for the weights of RBF
neural network.

The it" particle of the swarm is given by a k-
dimension vector X; = [Xi1 - - - k], where k denotes the
number of optimized parameters. Similar vectors P
and ¥; denote the best position and velocity of theith
particle respectively. The velocity of theit" particleis

updated as
Vi(t+1) = x[wii(t) + car (O {B; (t) —Xi(t)}
+C2ra(t){Pg(t) —Xi(t)}], ©)
and the particle position is updated as
Xi(t+1) =%t +%t+1). (6)

In the above equations, fi; denotes global best posi-
tions, while ¢ and ¢, are the cognitive and social pa
rameters respectively, and are both positive constants.
Parameter w is the inertia weight and y is called the
constriction factor (Eberhart, R., Shi, Y., 1998). The
value of cognitive parameter c; signifies a particle’s
attraction to a local best position based on its past
experiences. The value of social parameter ¢, deter-
minesthe swarm’s attraction towardsaglobal best po-
sition.

4 TRAINING ALGORITHM

Given a set of m observations of input and out-
put, ueR M and yeR 1™, a hybrid PSO/Subspace
identification algorithm is proposed below based on
minimization of output error given in equation (4).

1. Estimate state-space matrices Ao, Bo, Co and Dg

(initial estimate) from original non linear data us-

ing N4SID.

2. lteration=k = 1.

3. Initialize PSO with random popul ation of possible
RBF network weights.

4. Wi = minyexa J (Ak_1,Br_1,Ck_1,Dk_1,W).

5. Estimate set of RBF neural network outputs
VEeR 1xm

VK = qu)T
[ 0(L)1--0(L)g 1"
= [ W :
L O(mM)1---d(m)q
o) 1"
= [wacwad |
L o(m)

6. Estimate state space matrices Ak, Bk, Ck and Dy
from [vy,y]. This estimate of state-space model
would be an improvement on the previous esti-
mate.

7. Regenerate §,eR <™.

8. If minimum goal isnot achieved, iteration = k+ 1.
Repeat steps 3to 7.



5 SIMULATION RESULTS

51 Examplel

The first example considers the following Hammer-
stein type nonlinear process whose static nonlinearity
is given by

v(t) = sign(u(t)) v/|u(t)]. ()

The dynamic linear part is given by athird order
discrete time state-space system

180 1 0 4.80
A=| -107 0 1 |,B=| 193 |,

021 0 0 121

c=[10 0].

The eigen values of the linear subsystem lie at
A = 0.7, A, = 0.6, and A3 = 0.5. Desired outputs
are generated by exciting the process model with a
rich set of uniformly distributed random numbersin
the interval [—1.75,1.75]. An RBF network of 10
neurons is initialized with random synaptic weights
and centers uniformly distributed in the input inter-
val. PSO socia and cognitive parameters ¢, and ¢,
are kept aimost equal to each other with c¢; dightly
larger than cp and ¢1 + ¢, > 4 asproposedin (Carlisle,
A., Dozier, G., 2001). This alow trusting past ex-
periences as well as ample exploration of the swarm
for a global best solution. Constriction factor is kept
close to 1 to enable slow convergence with better ex-
ploration. Number of particles amount to 10 for the
synaptic weights of 10 neurons. A swarm population
size of 50 is selected and the optimization process is
run for 100 iterations.

The agorithm shows promising results and mean
squared output error between normalized outputs of
actual and estimated systems converges to a final
value of 4 x 10~ in 24 iterations of the algorithm.
Figure 3 shows the nonlinearity estimate. Conver-
gence of mean squared error is shown in Figure 5.
An easy way to evaluate the estimate of linear dy-
namic part lies in comparing the eigen values of the
estimated system with true ones. The eigen values of
the estimated system lie at A =0.72,1, = 0.53 and
A3 = 0.53. Figure 4 shows the step response of the
dynamic linear part.

To evaluate the performance of the proposed al-
gorithm in noisy environment, zero mean Gaussian
additive noise is included at the output of the system
such that the signal to noiseratio (SNR) is 10dB. The
agorithm performs well in estimating the system de-
spite low output SNR. The final mean squared error
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Figure 3: Estimate of square root nonlinearity of example
1.

convergesto 1.4 x 10~2 in 30 iterations. Nonlinear-
ity estimateis shown in Figure 6. The eigen values of
the estimated system lie at A%%8 = 0.73, 1108 = 0.73

and A{%9B = 0.58.

The results presented above are obtained from a
single run of estimation algorithm. To further en-
sure the reliability and repeatability of the algorithm,
Monte-Carlo simulation is carried out and ensem-
ble statistics are tabulated in Table 1. The statistics
show encouraging convergence of normalized output
squared error and estimation of linear subsystem. Pa-
rameters of the nonlinearity cannot be compared be-
cause of the nonparametric nature of estimation. At
best, the estimates of nonlinearity can be judged from
the shapes of estimated nonlinear function as pre-
sented in Figures 3 and 6.

5.2 Example?2
The second example considers the following Ham-

merstein type nonlinear process whose static nonlin-
earity is given by

vt) = tanh[2u(t)] 15> u(t),
vt) = % 4> ult) > 15.

Thedynamiclinear part is given by the following sec-
ond order discrete time state-space system

10 10 1
A= [ 05 0.0]75_ [ 0.5}’

c=[10].

The linear part of the system has eigen values at
A12 =0.5+0.5. Desired outputs are generated by



Table 1: Monte-Carlo simulation statistics for example 1

Estimation resultswithout output noise

Total number of runs 200
Magnitude of actual eigen value A1 of linear subsystem 0.7
Mean magnitude of estimated eigen value 5»1
of linear subsystem 0.713
Variance of eigen value estimate A, 8x 104
Magnitude of actual eigen value A, of linear subsystem 0.6
Mean magnitude of estimated eigen value 12
of linear subsystem 0.62
Variance of eigen value estimate A, 45x% 103
Magnitude of actual eigen value A3 of linear subsystem 0.5
Mean magnitude of estimated eigen value A3
of linear subsystem 0.481
Variance of eigen value estimate A3 5.7x 1073
Average number of iterations required for every run 8.26
Average mean squared output error (M SE) 9.8x 104
Estimation resultswith output SNR 10dB
Total number of runs 200
Magnitude of actual eigen value A1 of linear subsystem 0.7
Mean magnitude of estimated eigen value A1
of linear subsystem 0.75
Variance of eigen value estimate A, 1.6x 1073
Magnitude of actual eigen value A, of linear subsystem 0.6
Mean magnitude of estimated eigen value A2
of linear subsystem 0.68
Variance of eigen value estimate A, 6x 103
Magnitude of actual eigen value A3 of linear subsystem 0.5
Mean magnitude of estimated eigen value 13
of linear subsystem 0.4
Variance of eigen value estimate A3 6x 102
Average number of iterations required for every run 8.02
Average mean sgquared output error (M SE) 6.6 x 103
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Figure 4: Step response of linear dynamic part of example
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Figure 5: Mean squared error for example 1.
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Figure 6: Estimate of square root nonlinearity of example 1
with output SNR 10dB.

exciting the process model with a rich set of uni-
formly distributed random numbers in the interval
[0,4]. An RBF network with 25 neurons is initial-
ized with random synaptic weights and uniformly dis-
tributed centers chosen within the input interval. PSO
socia and cognitive parameters and constriction fac-
tor are kept similar to example 1. The number of par-
ticlesis equal to the number of neurons and a popula-
tion size of 50 givesgood resultsagain. Theagorithm
performs well and estimates the system in 20 itera-
tions. The mean squared output error between nor-
malized values of actual and estimated outputs con-
verges to afinal value of 8 x 1074, The estimate of
nonlinearity shape is shown in Figure 7. Eigen val-
ues of the estimated system lieat A1 » = 0.497 £ 0.5i.
Step response of linear subsystem is shown in Figure
8. The sguared error convergence plot is shown in
Figure9.

Estimation is then carried out in noisy environ-
ment, with zero mean Gaussian additive noise in-
cluded at the output of the system such that the sig-
nal to noise ratio (SNR) is 10dB. The algorithm per-
forms well in noisy environment. The finad mean
squared error convergesto 1.8 x 103in 30 iterations.
Nonlinearity estimate is shown in Figure 10. The
eigen values of the estimated system lie at A1%® =
0.493+0.499i. '

Table 2 shows ensembl e statistics of Monte-Carlo
simulation for example 2. The statistics show encour-
aging convergence of normalized output squared er-
ror and estimation of linear subsystem. As mentioned
before, parameters of the nonlinearity cannot be com-
pared due to the nonparametric nature of estimation.
At best, the estimates of nonlinearity can be judged
from the shapes of estimated nonlinear function as
presented in Figures 7 and 10.

6 CONCLUSION

The PSO/Subspace agorithm is basically a com-
bination of PSO and Subspace N4SID algorithm, and
hence its convergence properties are directly related
to the convergence properties of PSO and Subspace
agorithms. PSO has been usually known to per-
form better than most evolutionary agorithms (EA)s
in finding global optimum provided its parametersare
tuned properly according to the application. The sub-
space agorithm is also known for having no conver-
gence problems. Its numerical robustness is guaran-
teed because of well understood linear algebra tech-
niques like QR decomposition and singular value de-
composition (SV D). Asaconseguence, it does not ex-
perience problemslike lack of convergence, slow con-



Table 2: Monte-Carlo simulation statistics for example 2

Estimation results without output noise

Total number of runs 200

Magnitude of actual eigen values\1 » of linear subsystem | 0.7071
Mean magnitude of estimated eigen values A1 »
of linear subsystem 0.7071
Variance of eigen value estimates 2x107°

Average number of iterations required for every run 9

Average mean sgquared output error (M SE)

7x107%

Estimation results with output SNR 10dB

Total number of runs 200

Magnitude of actual eigen valuesA1 » of linear subsystem | 0.7071
Mean magnitude of estimated eigen values A1 »
of linear subsystem 0.7079
Variance of eigen value estimates 6x10°

Average number of iterations required for every run 21

Average mean sgquared output error (M SE)

2x10°3
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Figure 7: Estimate of tangent-hyperbolic nonlinearity of ex-
ample 2.

vergence or numerical instability (Overschee, PV.,
Moor, B.D., 1994). Moreover, in order to assure re-
peatability and reliability of the proposed a gorithm,
Monte-Carlo simulations have been carried out. The
ensembl e statistics presented in Tables 1 and 2 show
strong convergenceand consistent performance of the
proposed algorithm.

The effect of noiseis also studied, and the algo-
rithm is seen to converge sufficiently in the presence
of noisy data as shown in the simulation results.
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Figure 8: Step response of linear dynamic part of example
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