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Abstract—In this paper, an intelligent Model Predictive Con-
troller (MPC) for a Synchronous Power Machine on Infinite
Bus (SMIB) is proposed. Owing to the nonlinear and multi-
variable nature of the SMIB system, calculating optimal control
signals can be difficult. To solve this problem, a novel scheme
of predictive controller in tandem with heuristic optimization
algorithms is proposed. Numerical simulations are carried out
and performance of the controller under different conditions
and in combination with different optimizers is analysed in
detail. Comparison is made with the performance of existing
SMIB controllers present in the literature and improvements are
observed.

I. INTRODUCTION

The optimal and efficient usage of a Single synchronous
Machine on Infinite Bus (SMIB) has been one of the most
important problems for power system designers. Thus, various
methods have been developed in order to control this system as
efficiently as possible, preferably from a perturbed or unstable
state, to a stable desired set-point.

The SMIB system is complex and highly nonlinear. Hence,
most approaches toward controller design for this system
involve some kind of linearization [1]. Complex nonlinear
transformations are also used in order to reduce the order of
the system as in [2], [3] and [4].

One of the earliest method involving classical control is
given by Demello [5] which concerned more with the stabi-
lization of the system than with the control of the system in
case of perturbations. Optimal control theory for stabilizing
SMIB power systems was developed by Anderson [6] as well
as by Yu [7]. These optimal controllers were linear. Adaptive
control techniques have also been proposed for SMIB, most
of which involve linearization or model approximation. Paha-
lawaththa et al. [8] proposed an adaptive multi-input multi-
output (MIMO) self-tuning Power System Stabilizer (PSS).
Although the actual system is complex and nonlinear, the
system was approximately identified using recursive least
mean square (LMS). This reduced-order-model was then used
to control the system. Tabu-search based robust PSS for single
machine as well as multi-machine on infinite bus power
systems was proposed by Abdel-Magid et al. [9]. Matthews
et al. developed a Variable Structure Controller (VSC) for
SMIB [10]. The paper presented linear VSC controller using

nonlinear transformation which showed good performance in
bringing the system from a perturbed state to the equilib-
rium state. However this control technique was slow and
inaccurate resulting in large overshoots in the mechanical
power generated. Moreover, the control signals are not used
effectively. These issues arise due to the proposed design
procedure of the sliding VSC as it involves transforming
the state-space system into a Luenberg canonical form and
then constructing a suitable sliding surface. This procedure,
especially the first step, is complicated and involves many
manipulations while also sacrificing the precision of control.
Al-Musabi [11] proposed a newly designed VSC for SMIB
system utilizing iterative heuristic optimization techniques like
Genetic Algorithms (GA) and Particle Swarm Optimization
(PSO) to provide a simpler, more systematic method with
no need for complex approximations. This enabled direct
application of the VSC design to the nonlinear model without
undergoing bothersome transformations. It was successfully
applied to the model given in [10] and showed significant
improvements compared to previous work on this subject.
The overshoots and response time of the system improved.
However, this technique suffered from the same problems as
of Matthews and Cao, in which the control signal was not able
to reach to its maximum allowable values and the values of
the state variables of the system drastically shifted from their
equilibrium values.

A. Paper contribution and organization

In this paper, intelligent Model Predictive Control (MPC)
schemes are proposed. The proposed techniques are directly
applied to the nonlinear SMIB model. The primary objective is
to drive the states of the complex and nonlinear SMIB system
from a perturbed state to a desired set-point without the need
of any approximation, linearizations, or model reduction, and
while taking into consideration the constraints on the states and
inputs. Evolutionary Programming (EP), GA and PSO are used
to find the best optimum control signals to drive the SMIB
plant from one operating point to other. The combination of
Model Predictive Control (MPC) and evolutionary techniques
will give obvious advantages with regards to optimal control
and constraints handling.



Notations in this paper are used in the following manner.
Variables in lower case represent scalar quantities while lower
case bold variables represent vector quantities. Upper case
bold variables are used to represent matrices. The only excep-
tions to this convention are in the choice of conventional J for
the cost function, and where notations are defined otherwise,
as in the plant model.

II. MODEL PREDICTIVE CONTROL

The Model Predictive Control (MPC) is one of the most
well-known and successful control methodologies that can
incorporate and handle nonlinearities and constraints in a
structured way for any process model [12]. In these techniques,
an explicit dynamic model of a plant is used to predict the
effect of future actions of the manipulated variables on the
output, thus providing the name Model Predictive Control. The
future moves of the manipulated variables are determined by
minimizing the predicted error subject to necessary constraints.
The optimization is repeated at each sampling time based on
updated information i.e. measurements from the plant. Good
literature reviews of MPC can be found in [13], [14], [15],
[16] and the references therein.

A. The Intelligent Predictive Controller iMPC

The intelligent MPC concept is explained as follows. In a
discrete-time space with a sampling period T, the input and
output of every system will be denoted by u[k] := u(kT ) and
y[k] := y(kT ) respectively, where k is an integer from −∞
to +∞. Any nonlinear lumped system in this space can be
described by the following sets of equations:

x(k + 1) = h(x(k), u(k), k), (1)

y(k) = f(x(k), u(k), k), (2)

where h and f are nonlinear functions. Variables u(k) ε �nu

denote control efforts, x(k) ε �nx denote system states and
y(k) ε �ny denote process output at discrete-time instant k.

The future outputs of the system are predicted for a finite
number of future time-samples called Prediction Horizon H p.
Considering a system having multiple inputs and outputs
(MIMO), these predicted outputs, denoted by Ŷ = [ŷ(k +
1) · · · ŷ(k + Hp)]

T are dependent on future control moves
U = [u(k) · · · u(k + Hp − 1)]T . These future control moves
need to be determined so as to minimize a cost function
J based on predicted error. The objective is to keep the
process as closed as possible to the set of reference trajectories
W = [w(k+1) · · ·w(k+Hp)]

T for all outputs. Cost function
J is given as

J =

Hp∑
i=1

e(k + i)T Qe(k + i) +

Hc∑
i=1

Δu(k + i)T RΔu(k + i)

+

Hp∑
i=1

u(k + i)T Su(k + i), (3)

where Hc is the control horizon and e(k) is the error between
the desired output and the predicted output.

e(k) = w(k)− ŷ(k). (4)

Q, R and S are the weighting matrices for the error e,
control effort u and change in control effort Δu respectively.
Their values are assigned according to the process model and
constraints. Optimization of J results in an optimal control
sequence, u(k) ε �Hp . The first control signal in the sequence
is applied for process control, system states are updated and
the routine is repeated at the next sample k+1 using the latest
measured information. This is called the receding horizon
principle [17].

The algorithm can be summarized to generally have the
following three steps.

1) Set time-sample k = 0.
2) Set x(k) = initial conditions.

3) U =

⎡
⎢⎢⎢⎣

u(k)
u(k + 1)

...
u(k +Hp − 1)

⎤
⎥⎥⎥⎦ = minimize J(U).

4) Apply u(k) to the plant.
5) x(k + 1) = h(x(k), u(k), k).
6) k = k + 1.
7) repeat steps 3 - 6.

The minimization of cost J in step 3 is a crucial task and
requires strong optimization capabilities. In this work, opti-
mal control-efforts are calculated using different evolutionary
techniques discussed below. Their performance is compared
and analysed in later sections.

B. Genetic Algorithms

Genetic Algorithms (GA) are exploratory search and opti-
mization algorithms that can solve multi-modal and nonlinear
optimization problems. The GA algorithm was first introduced
by Holland in [18]. The general idea is to maintain a popu-
lation of chromosomes that represent possible solutions to a
problem at hand. With successive generations, the population
evolves into one with better solutions, based on the principles
of natural selection. The population undergoes transformation
and evolves towards optimal solution using operations that
imitate the biological process of mutation and crossover.

To solve the MPC problem at hand, an initial solution of n
number of chromosomes is generated. Each chromosome x i

represents a possible solution in m-dimensional space

xi = [xi1 · · ·xim]. (5)

Two candidates are then selected as parents to breed children
for the next generation. There exists multiple methods of
parent selection in the literature [19]. In the present work,
tournament-based selection is used to select parents. Each pair
of parents undergoes operation of crossover to breed two new
children. Out of the several crossover methods possible, the
BLX-α crossover is used in this work. The BLX-α crossover



ensures minimum repetition of solutions and provides better
exploration. If the child ci is represented by

ci = [ci1 · · · cim], (6)

then the jth gene of the given child is produced by generating
a random number in the interval [cmin−Iα, cmax+Iα], where

cmax = max[cparent1j , cparent2j ], (7)

cmin = min[cparent1j , cparent2j ], (8)

I = cmax − cmin. (9)

Typical value of α is around 0.5. Once, crossover is applied,
children are produced. These children become part of the next
generation, unless they represent a solution which is worse
than their parents. After crossover, chromosomes undergo
random mutation in their genes based on a probability-of-
mutation that is usually near 0.1. This way, generations evolve
moving in the direction of optimal solutions.

C. Evolutionary Programming

Like GA, Evolutionary Programming (EP) is a heuristic
population-based search procedure that incorporates random
variation and selection. It has been reported by Fogel to per-
form well with highly epistatic objective functions, i.e. where
the parameters being optimized are highly correlated. The
EP algorithm makes sure that a parent having an advantage
is not lost without transferring its advantageous gene to the
child. It combines old and new generation and uses tournament
competition amongst them. This ensures that individuals with
good capabilities are not lost by mutation. This feature makes
EP robust and efficient to epistatic objective functions and
on many problems [20]. The convergence analysis of EP is
well established and it has been proven to asymptotically
converge to the global optimum. Problem constraints can be
easily incorporated in EP as well [21].

In EP, an initial population of n number of m-dimensional
probable solutions is generated. Each candidate x i is repre-
sented in m-dimensional space as

xi = [xi1 · · ·xim], (10)

where m is the number of optimizable parameters. Initially,
each individual in the population is evaluated using the cost
function J in equation 3, and best solution is saved as xbest.
Mutation is then carried out on the individuals and n offsprings
are generated from n parents using the following equation.

xn+i = xi + [N(0, σ2
i1) · · ·N(0, σ2

im)], (11)

where σij is the standard deviation for the j th gene of the
ith individual specifying the range for the offspring produced,
and is given by.

σij = β
J(xi)

J(xmax)
(xmax

j − xmin
j ), (12)

where β is the scaling factor and J(xi) is the objective function
of individual xi. Best solution is then calculated from amongst
2n individuals and xbest is updated in case of an improvement.

A tournament is then arranged, and each individual in the
2n combined population is then compared with q opponents
selected at random such that q < 2n− 1. A weighting factor
wi is assigned to every individual based on the following
equations.

wi =

q∑
t=1

= wt (13)

wt =

{
1 ifU > J(xi)

J(xi)+J(xt)

0 otherwise
(14)

where U is a uniform random number over [0,1]. After
obtaining the competition weights for all 2n individuals, the
individuals with highest weights are selected to represent the
parents of the next generation. In the proposed MPC strategy,
EP is used to find optimal control signals u1,2(k) to steer
the states of the synchronous machine towards the reference
trajectory.

D. Particle Swarm Optimization

PSO is one of the best known and most widely used opti-
mization methods. It was introduced by Kennedy and Eberhart
[22] and is inspired by human or animal social behavior.
Compared to other Evolutionary Algorithms (EAs), PSO is
more robust and faster. Since PSO can generate a high-quality
solution quickly with most stable convergence characteristics,
it has been effective in solving problems relevant to a wide
variety of scientific fields [23].

The PSO algorithm starts with a swarm of particles
X(k) ε � n×m at iteration k = 0, where n denotes the size of
the population in which each particle xi(k) is represented by
an m-dimensional vector

xi(k) = [xi1(k) · · ·xim(k)], (15)

where m represents the number of parameters that need to
be optimized.. The particles change their positions by flying
around in a multi-dimensional search space until a relatively
unchanging position has been encountered. The velocity for
the ith particle is represented by an m-dimensional vector

vi(k) = [vi1(k) · · · vim(k)]. (16)

An inertia weight, w is used to control the impact of the
previous velocities on the current velocity. A large initial
inertia weight is recommended for global exploration and
vice versa. As a particle moves through the search space, it
compares its fitness value at the current position to the best
fitness value it has ever attained at any time up to the current
time. The best position that is associated with the best fitness
encountered so far is the individual or local best x∗

j (k). The
global best x∗∗(k) is the best position among all individual
best positions achieved so far.

The jth parameter of every particle is generated within the
range of the j th optimized parameter [xmax

j , xmin
j ]. For the

problem at hand, each particle is evaluated using the objective
function in equation 3. As the iterations progress, each particle



Fig. 1. Diagram of Synchronous Machine on Infinite Bus (SMIB) Power
System

is compared with its local best and local best is updated. Inertia
weight is updated according to w = αw, where α is smaller
than but close to 1. Finally velocity and position of every
particle is updated. Velocity update of ith particle is given by

vi(k + 1) = wvi(k) + c1ri1(k){x∗
i (k)− xi(k)}

+c2ri2(k){x∗∗(k)− xi(k)}], (17)

xi(k + 1) = vi(k) + xi(k). (18)

where c1 and c2 are cognitive and social parameters and
represent orientation of velocity update towards local and
global best respectively.

III. THE SMIB SYSTEM

A. Nonlinear Model of the SMIB System

The nonlinear model of the SMIB system taken here is given
in [10] and the block diagram is shown in Figure 1.

The dominant dynamics of the nonlinear system can be
simplified using the following assumptions:

• The voltage behind the transient reactance of the machine
is constant.

• Governor/turbine dynamics are represented by a slow
first-order system

• Swing equations are used to describe the mechanical
motion of the synchronous machine.

The dynamics of the system are described by the following
equations:

δ̇ = ω (19)

ω̇ =
ωB

2H
[Pm − Pac −KPdc]−D.ω (20)

Pdc = (cos(β)−RcId)Id (21)

İd =
1

L
(cos(β)−RcId) (22)

˙Pm = −αPm + v (23)

where δ is the rotor angle of machine in electrical rad
relative to the center of mass, ω is the rotor angular velocity in

rad/s with respect to synchronous speed, H is inertia constant
in sec, D is the damping coefficient in sec−1, Pm is per unit
mechanical power, Pac is per unit AC power, Pdc is the per
unit power stored in the converter. ωB = 377 rad/s. ωb =
75.399 rad/s.K = 1, α is the time constant of governor/turbine
or mechanical power actuator. v is the corresponding input,
Id is the Direct Current through the converter and R c is the
Commutating resistance per unit.

X = Xd +Xt +Xl (24)

Pac = (E1E2/X) sin δ (25)

Based on the dynamic model above, the states are defined as
follows:
x1 = δ; x2 = Id; x3 = ω; and x4 = Pm

And the control inputs are:
u1 = cos(β) and u2 = v
The system can be represented in state-space form as

follows:⎡
⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x3

−k1x2

−k2sin(x1) + k3x
2
2 −Dx3 + k5x4

αx4

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 0
k4 0

−k5x2 0
0 1

⎤
⎥⎥⎦
[

u1

u2

]
(26)

where,
k1 = Rc

L , k2 = ωBE1E2

2HX , k3 = ωbRc

2HX , k4 = 1
L , k5 = ωB

2H

The DC Converter is rated at 80 MW. The system is 230
kV and the machine rating is 800 MVA. On this rating base,
the system parameters are [10]: X = 0.2 pu, Rc = 0.3 pu, L
= 0.015 pu, H = 7.0 s, D = 0.5 s−1, and α = -0.1 s−1. This
corresponds to k1 = 20, k2 = 177.72857, k3 = 8.078571, k4

= 66.667, and k5 = 26.928561.

B. Control Objectives

The primary control objective is to drive the system from
a perturbed, possibly unstable state to a desired equilibrium
point and to maintain it there.

The controller achieves this by posing the SMIB system
as an optimization problem in which the error is predicted
beforehand using MPC and is minimized using the intelligent
heuristics. The cost function proposed is the following:

J =

Hp∑
i=1

ΔI2d +Δω2 (27)

where ΔId is the error in the DC current through the
converter and Δω is the error in the rotor angular velocity
in rad s−1 with respect to the synchronous speed of the rotor.

The control objectives involve these subgoals:

1) The machine must be operated at the rated frequency,
i.e. change in frequency, x3 must be zero at equilibrium.



TABLE I
PARAMETER VALUES FOR OPTIMIZER

Parameters GA EP PSO
Population size 70 150 50

Number of genes or particles 10 10 10
Number of elite chromosomes 4

Number of generations or iterations 200 200 200
Tournament size for parents selection 15 100

Crossover type BLX-α
α 0.5

Probability of mutation 0.1
Initial value of inertia weight 0.9
Final value of inertia weight 0.4

Cognitive parameter c1 2
Social parameter c2 2

2) The DC current through the converter, Id, x2 must be
zero at equilibrium.

3) A specified amount of AC power is required to be
delivered to the bus. This defines the desired load angle,
γ, of x1.

The control inputs are constrained as follows for all cases:

−0.95 ≤ u1 ≤ 0.985 (28)

|u2| ≤ 3.5 (29)

Due to the rating of the converter, limit is also imposed on
x2 (Id) as: 0 ≤ x2 ≤ 0.1 pu. And since x4 = Pm, it is required
that x4 ≥ 0.

IV. SIMULATION RESULTS

The SMIB system described in Section III has been simu-
lated in a benchmark test. The control inputs are constrained
according to Equations 28 and 29. The initial conditions are
defined as [10]:

x1 = 0.0522, x2 = 0.1, x3 = 0.1,

x4 = 6.6 sin(x1(0)) = 0.3444

Here, the initial states x2 (Id) and x3 (ω) are perturbed from
equilibrium and the control objective is to converge them to
0 using the inputs u1 = cos(β) and u2 = v.

It is observed that all of the proposed iMPC techniques
succeed in controlling the perturbed system to equilibrium
quickly, as seen in Figures 2 to 5. However, there are marked
differences in the dynamic responses among the various
heuristics used. It is observed the PSO gives the best responses
by far, followed closely by GA. EP delivers the results, but
with fluctuations and delays. A look at Table I shows that
PSO delivers best results with the smallest initial population
size. While GA delivers comparable results, it requires slightly
larger population to achieve these results. A further reduction
in GA population size adversely affects the performance of
the controller. The EP algorithm requires the largest initial
population. The dynamic response of the controlled outputs,
Id and ω is seen in Figure 3 and Figure 4 respectively. The
convertor current, Id, takes only 0.03 seconds to reach the
required equilibrium state of 0 for PSO. More importantly, the
change in frequency also converges end reaches the required
equilibrium state after 0.1s. Practically, this means that the
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system frequency is brought to 60Hz after starting from an
error of 0.1 p.u. The other states of the system, x1 = δ and
x4 = Pm settle at slightly different equilibrium points from
the initial values after the perturbed system is brought to
equilibrium.

The Figures 2 to 5 also show the comparison of these results
with Al-Musabi’s [11] and Matthew’s [10] work. The proposed
controller excels by bringing the system to the equilibrium
states considerably quicker and keeping the deviation in the
angle and mechanical power of the system minimal. This
is especially true for the MPC-PSO example. The frequency
deviation reached a maximum value of only -0.013 p.u. while
for the previous work, the deviation reached a maximum of
0.35p.u. at 0.25s. The frequency settling time thus shows a 10-
fold improvement. The convertor current, Id is also observed
to reach the required equilibrium state in a shorter duration.

The control effort applied is seen in Figures 6 and 7. For the
MPC-PSO example, the first control input, cos(β) is needed
for only 0.03s. After that, Id settles to zero. The second control
effort, v is in effect for 0.1s. u1 and u2 are also found to be
within the constraints imposed by the system in Equations 28
and 29.

It is duly noted that the proposed iMPC controllers do not
cause large changes in the angle and mechanical power of the
SMIB system during the dynamic behavior. This is quite in
contrast with the previous work where huge deviations from
the equilibrium states are observed.

Another important point to note is that the control effort,
v is in effect for at least 1 sec in previous work. However,
during the whole duration, it is unable to reach the maximum
allowable control limits defined in Equation 29, attaining a
maximum of ±1.5. Using the proposed controller MPC-PSO
and MPC-GA techniques, it is noted that the whole range
of control input is utilized and the control input does reach
the maximum allowable values of ±3.5. This explains the
improved results achieved by the proposed controllers, since
complete range of possible control efforts is properly explored,
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thus enabling the system to reach equilibrium quickly.

V. CONCLUSION

A new controller for SMIB system is presented in this
paper. The proposed iMPC techniques demonstrate successful
control of the plant without linearization or approximation.
This demonstrates the ability of the proposed intelligent con-
trollers to effectively control complex nonlinear plants having
industrial significance.

From the comparisons, it is clear that the PSO based iMPC
performs the best, followed by GA and EP. Comparisons made
with VSC based controllers show that iMPC techniques are
much more successful and swift in dealing with the perturbed
SMIB system. It is also noted that the proposed techniques
enable the system to utilize the full range of control inputs
which greatly improves the dynamic response and reduces the
deviation in the uncontrolled states of the system.
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