

Extra Handout No 1
By Dr Sheikh Sharif Iqbal

80x86 Physical Addresses and Assembly Language Syntax

Objective:

- To discuss the process used by 80x86 microprocessor to generate
 the physical addresses (PA’s) of main memory system

- To introduce the syntax of Assembly language statements

-To present a basic Assembly language data-transfer (or MOV)
 instruction of the for 80X86 system.

Slide 1: Generating Physical Addresses of 80x86 main-memory:

- The internal registers of 8086/8088 processors are 16-bit (4 hex
digit) wide, whereas the 1-MByte main memory locations require 20
bit (5 hex digit) wide physical address (PA).

- Thus, Physical address are divided into two 16-bit parts, called
offset and segment addresses, before storing it into CPU registers.

- The Segment address are made of the leftmost 4-hex digits of the
Base address (as the rightmost digit are fixed to “0H”) related to for
Code, Data, Extra and Stack segment memory locations and stored
into 16-bit CS, DS, ES and SS registers, respectively.

Ref: 'Online course
on EE-390', KFUPM

Slide 2: Generating Physical Addresses PA’s (cont’d)

- Thus, PA address is expressed either as a 5 hex-digit number or as
combination of its segment-address (SA) & offset-address (OA) parts.

 - The method used to relate these two
expressions of PA can be written as:
PA= 10 * SG + OA. Thus, if SG=2000H
and OA=45ABH, then related PA can be
expressed as, PA=2000:45ABH=245ABH

- Note the rightmost hex digit of the base address is ignored as it should be set to

0H and only the leftmost hex digits are loaded into segment address (SG)

- Thus, the 20-bit physical address of the next executable instruction
stored in the code segment memory location is given by;
(PA)within Code-Segment memory = (CS)register value X10 +(IP)register value = CS:IP

- Note that the segment part of the PA is stored in CS register and offset part of
the PA is stored in IP register

- Thus, the physical address of the data to be read/written in the stack
segment memory location is given by;
(PA)within Stack-Segment memory = (SS)register value X 10 + (SP)register value = SS:SP

- Note that the segment part of the PA is stored in SS register and offset part of
the PA is stored in SP register

OA = 4 5 A B

SG = 2 0 0 0

PA = 2 4 5 A B

Slide 3: Generating Physical Addresses PA’s (cont’d)

- The physical address of source data to be read (into the CPU
registers) from the Data segment memory location are given by;
(PA)withih Data-Segment memory = (DS)register value X 10 + (SI)register value = DS:SI

-The physical address of destination data to be written (from the CPU
registers) into the Data segment memory location are given by;
(PA)within Data-Segment memory = (DS)register value X 10 + (DI)register value = DS:DI

- Note that the segment part of the PA is stored in DS register and offset part of the
PA is stored in SI or DI registers depending on accessing source or destination
memory locations, respectively.

- Similarly, PA’s for accessed extra segment memory locations are;
(PA)within Extra-Segment memory =(ES)register value X10+ (SI)register value = ES:SI
(PA)within Extra-Segment memory =(ES)register value X10+(DI)register value = ES:DI

- Note that the segment part of the PA is stored in ES register and offset part of

the PA is stored in SI or DI registers depending on accessing source or
destination memory locations, respectively.

Slide 4: Generating Physical Addresses PA’s (cont’d):

-Thus, 20 Bit Physical Address pointing to a Memory storage = Related
 Segment Register value * 10 + Offset Register value

- Typical segment and offset register combinations are:

(PA)in Code-Segment memory = CS*10 + IP = CS:IP;
 Remember: CS:IP expression is also called the Logical Address

(PA)in Data-Segment = DS*10 + SI = DS:SI and PA= DS*10 + DI = DS:DI
(PA)in Extra-Seg. memory = ES*10 + SI = ES:SI and PA = ES*10 + DI = ES:DI
(PA)in Stack-Segment = SS*10 + SP = SS:SP

- Remember that lowest nibble (or lowest hex digit) of base address (lowest
physical address of a segment) should be “0H” (PA)Seg Base = 12340H-

- A demonstrative example of this process is given in the next slide.

Slide 5: Generating Physical Addresses PA’s (cont’d):

Thus: for DS=7FA2H and the offset is 438EH;

- The calculated physical address (PA) of memory

location is: 7FA2x10H + 438EH = 83DAEH

- The calculate the lower range of the data

segment is: 7FA2 x10H + 0000H = 7FA20H

- The calculate the upper range of the data

segment is: 7FA2 x10H + FFFFH = 8FA1FH

- The Logical address of the memory

location is : 7FA2 : 438E H

H02FA7 1 Byte
7FA21H A A H

64-KByte
Data Seg.

83DAEH Accessed data

8FA1EH 1 5 H
8FA1FH 4 9 H

Slide 6: Example-1 on Physical Addresses Generation:

Q. For the given values of the CPU registers, determine the PA’s of
the (a) next code to be executed, (b) source data stored in Data-
segment, (c) Stack-segment memory location to be accessed, (d)
Extra-segment memory location where destination data can be stored

Slide 7: Example-1 on Physical Addresses Generation (cont’d):
Animate
- The solution of the previous example problem is as follows:
(a) Instruction codes reside in the Code-segment memory location, so
for the given CPU register values, the PA that points to the Code-
segment is; PA = CS:IP = CSX10+IP 0000:FFFCH = 0FFFCH.

(b) Similarly, the PA that points to the source data stored in Data-
segment is; PA = DS:SI = DSX10+SI 4000:FFFEH = 4FFFEH.

 Main Memory

H00000 1 Byte
00001H 5 A H
00002H 7 E H

Code Seg.

0FFFCH 2 5 H
0FFFEH C 8 H
0FFFFH 8 3 H

 .
 H04000 7 F H

40001H 6 3 H
40003H 2 A H

Data Seg.

4FFFEH A 6 H
4FFFFH B 2 H

 .

H00008 1 Byte
80001H A A H
80002H F B H

Stack Seg

8FFFCH 2 1 H
8FFFEH 1 5 H
8FFFFH 4 9 H

 .
 H0000B 5 1 H

B0001H 6 B H
B0003H B A H

Extra Seg.

BFFFEH A 6 H
BFFFFH 7 7 H

 .

(c) The word memory location to be accessed in the Stacked-
segment is; PA = SS:SP = SSX10+SP 8000:0002H = 80002H.

(d) And the PA that points to the destination data stored in Extra
Data-segment is; PA = ES:DI = ESX10+DI 8000:0001H = 80001H.

Slide 8: Example-2 on Physical Addresses Generation:

Q. If Memory addresses B0000H to BFFFFH is selected to be the new
Code-segment, then to point to point to a location with PA=B1234H,
what values should be loaded into the related CPU registers.

Solution: This instruction involves the Code-segment and will only
affect the CS and IP registers of the CPU. Since the Base address of
the Code-segment is specified to be ‘B0000H’, the segment-address
(SA) part of the PA that will loaded into the CS register will be ’B000H’
and the offset-address (OA) part of the PA that will be loaded into the
IP register will be ’1234H’.

 Main Memory

H00000 1 Byte
00001H 5 A H
00002H 7 E H

64 K Byte
Segment

0FFFCH 2 5 H
0FFFEH C 8 H
0FFFFH 8 3 H

 .
 H04000 7 F H

40001H 6 3 H
40003H 2 A H

64 K Byte
Segment

4FFFEH A 6 H
4FFFFH B 2 H

 .

H00008 1 Byte
80001H A A H
80002H F B H

64 K Byte
Segment

8FFFCH 2 1 H
8FFFEH 1 5 H
8FFFFH 4 9 H

 .
 H0000B 5 1 H

B0001H 6 B H
B0003H B A H

64 K Byte
Segment

BFFFEH A 6 H
BFFFFH 7 7 H

 .

Slide 10: Introduction to Assembly Language Programming:

-The native language of 80x86 processors is machine language and
programs written in this language are called machine-codes (in binary).

- In early computers, instructions were manually converted into binary
machine codes and entered into the computer using panel switches.

- But the idea of writing a “program” that will efficiently translate the
instructions into binary machine-codes (later called Assemblers and
Compilers) were a breakthrough in the field of programming.

- Let us now learn how to program 80x86 processors using a low-
level language, called Assembly language, where “Assemblers”
(TASM or MASM) are used to convert its instructions to machine codes.

- Assembly language program is often used for real time application
due to its efficient machine-codes, which occupies less memory and
executes faster compared to that of higher level languages.

Hyperlink data on Programming: Program is a Sequence of Commands or
Instructions that defines the operation to be carried out by the microcomputer.
Whereas a Software consist of a Wide verity of programs that can be run by the
micro-computer, such as, Languages, Operating systems, Application programs,
diagnostics etc.

Hyperlink data on Low level language: When a program written using a low-
level language is converted or translated into machine language, it generates an
efficient machine-code that occupies less memory and executes faster.

Hyperlink data on TASM or MASM: “Microsoft Assembler (MASM) and Turbo
Assembler (TASM) are two popular Assemblers or translators used to convert
Assembly language programs into machine-language.

Hyperlink data on real time : Real time means that the task required by the
application must be completed before any other input to the program that will
alter its operation can occur. Such as, program that controls the operation of a
floppy disk drive.

Hyperlink data on High level language: When a program is written using a
user friendly high-level language (C, Pascal etc) and is converted or translated
into machine code by a complier, it generates a relatively less efficient machine-

code that occupies more memory spaces and consequently slows the execution
process.

Slide 11: Assembly Language Syntax for 80x86 processors:

- Assembly language programs, also called source-codes, are often
described using alphanumeric symbols rather than binary codes.

- To be executed by 80x86 processors, the source code needs to be
converted into machine-code using “Assemblers” (MASM or TASM)

- Syntax of an assembly language statement consists of four fields:

Label: OpCode Oprand ; Comment

where, “Opcode” and “Operand” fields often consist the “Instruction”.

- The “Label” is an optional field and used to identify the address of
the instruction (often used in jumping). The maximum length of a
label differs between assemblers (4 to 32 characters), whereas all
labels begins with a valid character (A..Z) and are suffixed by a colon

Slide 12: Assembly Language Syntax for 80x86 (cont’d):

- “Opcode” or operation code is a compulsory part of the instruction
that specifies the operations to be performed by the microprocessor.
Opcodes consists of 3-5 letter abbreviations, called mnemonics and
often require additional data on which operations will be performed.

Hyperlink data mnemonics: A mnemonic is an abbreviation which represents the
actual operation code of the instruction. Mnemonics are used because they are
more meaningful than hex or binary values, reduce the chances of making an
error and are easier to remember than bit values.

- The “Operand” field consists of source/destination data that may be
required/generated by the “opcode” to complete the operation. Often
different addressing modes are used to specify these operands.

- The “Comment” is an optional field used by the programmer to
explain how the coded program works. Remember, the “Assembler”
doesn’t generate the related machine-codes for comments.

- The 80x86 microprocessor supports 117 basic instructions, each of
which can be expressed using one assembly language statement.
Next slide discusses the most common data transfer instruction.

- The remaining 116 instructions, supported by 80x86 assembly language
programs, will be explained in later modules, as needed.

Slide 13: Assembly language Data Transfer Instruction:

- In this slide, a basic assembly language instruction used to copy
byte/word data from one storage location to another is introduced

- Thus, the assembly language statement for this instruction is;

MOV Destination-operand(D) , Source-operand(S)

o Note optional “Label” and “Comment” fields are not included
o the “OpCode” or operation to be performed is specified by a 3

letter abbreviation or mnemonic, “MOV”
o the “Operand” fields consisted of a source data location and

destination or resulted data location separated by a comma.

Such as; MOV AL, BL ; MOV CH,2AH and MOV AL, [DS:1122H]

- In example 1, BL is the source location and AL is the destination location. Thus,

a byte-data stored in BL register of the CPU will be copied into the AL register.
- In example 2, CH register is the destination location and a Hexadecimal data of

2A will be copied into CH register.
- In example 3, the memory location with PA=DS:1122H is the source location

and AL register is the destination location. Thus, this instruction copies byte
data contents of the memory location DS:1122H into AL register.

Mnemonic Meaning Format Operation Flags affected

MOV Move MOV D,S (S) (D) None

Slide 14: Assembly language Data Transfer Instruction (cont’d)

- The list of important operand combinations are shown below:

Allowed or accepted operand combination of MOV
instruction

Destination operand Source operand

Any Memory location AX or AL (accumulator)

CPU internal Registers CPU internal Registers

AX or AL (accumulator) Any Memory location

CPU internal Registers Any Memory location

Any Memory location CPU internal Registers

CPU internal Registers Any Constant numbers

Any Memory location Any Constant numbers

Not-allowed or unaccepted operand combination of MOV
instruction (only a few are presented)

Destination operand Source operand

Any Memory location Any Memory location

Instruction pointer (IP) Contents of Registers,
Memory or Constant

8-bit register content 16-bit register content

Segment register Segment register

Constant data Register/memory location

 As in example 1 of
 previous slide

 As in example 3
 of previous slide

 As in example 2
 of previous slide

Slide 15: Assembly language Data Transfer Instruction (cont’d):

Example: For the given values, executing each instruction and find
the content of the destination- operands.

 (a) MOV CL,AH CX =______ (b) MOV AL,[SI] AX =______

 (c) MOV [ES:DI] DH = ______ (d) MOV AX,SP AX =______

 (e) MOV DH,[SP] DX =______

 Solutions: (a)AA34H, (b)3444H, (c) content of PA=30003H=90H,
 (d)1006H, (e)B18BH

 Main Memory

H00000 1 Byte
00001H 5 A H
00002H 7 E H

1-MByte

10005H 4 4 H
10006H C 8 H
10007H 8 3 H

11226H B 1 H
11227H C A H

30003H A 5 H
30005H B 2 H

 .
.

Remember:

The 8086 processor
has 16-bit data bus.

The 8088 processor
has 8-bit data bus.

They both have 20-bit
address bus and 16-bit
internal CPU registers
(AX, BX, SI, IP, )

Address/Data bus

