Ref: 'Online course
on EE-390', KFUPM

Extra Handout No 1
By Dr Sheikh Sharif Igbal

80x86 Physical Addresses and Assembly Lanquage Syntax

Objective:

- To discuss the process used by 80x86 microprocessor to generate
the physical addresses (PA’s) of main memory system

- To introduce the syntax of Assembly language statements

-To present a basic Assembly language data-transfer (or MOV)
instruction of the for 80X86 system.

Slide 1: Generating Physical Addresses of 80x86 main-memory:

- The internal registers of 8086/8088 processors are 16-bit (4 hex
digit) wide, whereas the 1-MByte main memory locations require 20
bit (5 hex digit) wide physical address (PA).

- Thus, Physical address are divided into two 16-bit parts, called
offset and segment addresses, before storing it into CPU registers.

- The Segment address are made of the leftmost 4-hex digits of the
Base address (as the rightmost digit are fixed to “Oy”) related to for
Code, Data, Extra and Stack segment memory locations and stored
into 16-bit CS, DS, ES and SS registers, respectively.

Slide 2: Generating Physical Addresses PA’'s (cont’'d)

- Thus, PA address is expressed either as a 5 hex-digit number or as
combination of its segment-address (SA) & offset-address (OA) parts.

- The method used to relate these two | _
expressions of PA can be written as: OA = 4 |5 |A|B

PA= 10 * SG + OA. Thus, if SG=20004 < SG=/2 |0 |O |0

and OA=45ABy, then related PA can be _
expressed as, PA=2000:45AB;=245ABy; | PA=]2 1[4 |5 A |B

- Note the rightmost hex digit of the base address is ignored as it should be set to
OH and only the leftmost hex digits are loaded into segment address (SG)

- Thus, the 20-bit physical address of the next executable instruction
stored in the code segment memory location is given by;
(PA)Within Code-Segment memory = (CS)register value X10 +(|P)register value = CS:IP

- Note that the segment part of the PA is stored in CS register and offset part of
the PA is stored in IP register

- Thus, the physical address of the data to be read/written in the stack
segment memory location is given by;
(PA)within Stack-Segment memory: (SS)register value X 10 + (Sp)register value = SS:SP

- Note that the segment part of the PA is stored in SS register and offset part of
the PA is stored in SP register

Slide 3: Generating Physical Addresses PA’'s (cont’'d)

- The physical address of source data to be read (into the CPU
registers) from the Data segment memory location are given by;

(PA)withih Data-Segment memory — (Ds)register value X 10+ (Sl)register value = DS:SI

-The physical address of destination data to be written (from the CPU
registers) into the Data segment memory location are given by;

(PA)within Data-Segment memory = (Ds)register value X 10+ (Dl)register value = DS:DI

- Note that the segment part of the PA is stored in DS register and offset part of the
PA is stored in Sl or DI registers depending on accessing source or destination
memory locations, respectively.

- Similarly, PA’s for accessed extra segment memory locations are;

(PA)Within Extra-Segment memory :(ES)register value X10+ (Sl)register value = ES:SI
(PA)within Extra-Segment memory :(Es)register value Xlo"‘(DI)register value = ES:DI

- Note that the segment part of the PA is stored in ES register and offset part of
the PA is stored in Sl or DI registers depending on accessing source or
destination memory locations, respectively.

Slide 4: Generating Physical Addresses PA’s (cont’'d):

-Thus, 20 Bit Physical Address pointing to a Memory storage = Related
Segment Register value * 10 + Offset Register value

- Typical segment and offset register combinations are:

(PA)in Code-Segment memory — CS*10 + IP = CS:IP;
Remember: CS:IP expression is also called the Logical Address

(PA)in extra-seg. memory = ES*10 + SI = ES:SI and PA = ES*10 + DI = ES:DI
(PA)in stack-segment = SS*10 + SP = SS:SP

- Remember that lowest nibble (or lowest hex digit) of base address (lowest
physical address of a segment) should be “0”=> (PA)seq Base = 123404-

- A demonstrative example of this process is given in the next slide.

Slide 5: Generating Physical Addresses PA’s (cont’d):

Thus: for DS=7FA24 and the offset is 438Ex; 7FA20,

- The calculated physical address (PA) of memory 7FA214

location is: 7TFA2x10y + 438Ey = 83DAEH

- The calculate the lower range of the data

segment is: 7FA2 x10y + 0000 = 7TFA20y 83DAE
- The calculate the upper range of the data

segment is: 7FA2 x10y + FFFFy = 8FAL1Fy

8FA1Ey,
- The Logical address of the memory \8FA1FH

location is : 7TFA2: 438E 4

1 Byte

AAy

64-KByte
Data Seg.

Accessed data

15y

49,

BIB8I8: Example-1 on Physical Addresses Generation:

Q. For the given values of the CPU registers, determine the PA’s of
the (a) next code to be executed, (b) source data stored in Data-
segment, (c) Stack-segment memory location to be accessed, (d)
Extra-segment memory location where destination data can be stored

Main Memory

N T—
| | 3888? 158Ayte 80000, [1 Byte
oooozH 7 EH 80001, AQu
" - 80002y, FBy
Code Seg.
g Stack Seg
des] i e
OFFFFH 83 ' 8FFFE, 15y
H H 8FFFF, 49,
poc e R
40003H 2 AH BOOOL, 6By
H H B0003, BAy
Data Seg. Extra Seg.
TEpdy| | s
‘ H 2+ BFFFF, 774
IP = FFFC+—
CS = 00004
BN Example-1 on Phwsical Addtesses Generation (cont'd):
oo \VAW Awy=

- The solution of the previ ls ex ?Wblem is as follows:
(a) Instruction codes reS| €in the ode- se'@'ment memory location, so

for the given CPU reglste % hat points to the Code-
segment is; PA =CS:IP = O:FFFCy = OFFFCy,.

(b) Similarly, the PA thgkggw,tagqu@{é%urqgggta stored in Data-
segment is; PA = DS:SI = DSX10+SI = 4000:FFFE, = 4FFFE.

Base Register, (BX)

Counter Register, (CX)

Data Register, (DX)

SP = 0002

(c) The word memory location to be accessed in the Stacked-
segment is; PA = SS:SP = SSX10+SP = 8000:0002, = 80002y.

(d) And the PA that points to the destination data stored in Extra
Data-segment is; PA = ES:DI = ESX10+DI = 8000:0001, = 80001,.

BIEENE: Example-2 on Physical Addresses Generation:

Q. If Memory addresses BO000y to BFFFF is selected to be the new
Code-segment, then to point to point to a location with PA=B1234,,
what values should be loaded into the related CPU registers.

Main Memory

N T——

| | 0000m- | 1 Byte 80000, [1 Byte

000014 SAY 80001, AAy

000024 TEn 800024 F By

64 K Byte

64 K Byte
Segment Segment
OFFFCy 25y 8EFFC,, 214
OFFFEy4 C8y 8EEFE, 15,
OFFFFy 834

8FFFF, 49,

40001 58 BO0OL, | 6B
40003, | 2A, ——
64 K Byte 64 K Byte
Segment Segment
AFFFE. | A6y Brere, [
| | AFFFFa] B2y BFFFF, | 774
—

Solution: This instruction involves the Code-segment and will only
affect the CS and IP registers of thégu Since the Base address of
the Code-segment is specified to dObOH’, the segment-address
(SA) part of the PA that will loaded into the CS register will be 'BO00’
and the offset-address (ORistarcbthedddenat!Wil be loaded into the
IP register will be 1234,

Code Segment, (CS)

Data Segment, (DS)

Stack Segment, (SS)

BB 10: Introduction to Assembly Language Programming:

-The native language of 80x86 processors is machine language and
programs written in this language are called machine-codes (in binary).

- In early computers, instructions were manually converted into binary
machine codes and entered into the computer using panel switches.

- But the idea of writing a “program” that will efficiently translate the
instructions into binary machine-codes (later called Assemblers and
Compilers) were a breakthrough in the field of programming.

- Let us now learn how to program 80x86 processors using a low-
level language, called Assembly language, where “Assemblers”
(TASM or MASM) are used to convert its instructions to machine codes.

- Assembly language program is often used for real time application
due to its efficient machine-codes, which occupies less memory and
executes faster compared to that of higher level languages.

Hyperlink data on Programming: Program is a Sequence of Commands or
Instructions that defines the operation to be carried out by the microcomputer.
Whereas a Software consist of a Wide verity of programs that can be run by the
micro-computer, such as, Languages, Operating systems, Application programs,
diagnostics etc.

Hyperlink data on Low level language: When a program written using a low-
level language is converted or translated into machine language, it generates an
efficient machine-code that occupies less memory and executes faster.

Hyperlink data on TASM or MASM: “Microsoft Assembler (MASM) and Turbo
Assembler (TASM) are two popular Assemblers or translators used to convert
Assembly language programs into machine-language.

Hyperlink data on real time : Real time means that the task required by the
application must be completed before any other input to the program that will
alter its operation can occur. Such as, program that controls the operation of a
floppy disk drive.

Hyperlink data on High level language: When a program is written using a
user friendly high-level language (C, Pascal etc) and is converted or translated
into machine code by a complier, it generates a relatively less efficient machine-

code that occupies more memory spaces and consequently slows the execution
process.

BB 11: Assembly Language Syntax for 80x86 processors:

- Assembly language programs, also called source-codes, are often
described using alphanumeric symbols rather than binary codes.

- To be executed by 80x86 processors, the source code needs to be
converted into machine-code using “Assemblers” (MASM or TASM)

- Syntax of an assembly language statement consists of four fields:

Label: OpCode Oprand ; Comment

where, “Opcode” and “Operand” fields often consist the “Instruction”.

- The “Label” is an optional field and used to identify the address of
the instruction (often used in jumping). The maximum length of a
label differs between assemblers (4 to 32 characters), whereas all
labels begins with a valid character (A..Z) and are suffixed by a colon

Blif812: Assembly Language Syntax for 80x86 (cont’d):

- “Opcode” or operation code is a compulsory part of the instruction
that specifies the operations to be performed by the microprocessor.
Opcodes consists of 3-5 letter abbreviations, called mnemonics and
often require additional data on which operations will be performed.

Hyperlink data mnemonics: A mnemonic is an abbreviation which represents the
actual operation code of the instruction. Mnemonics are used because they are
more meaningful than hex or binary values, reduce the chances of making an
error and are easier to remember than bit values.

- The “Operand” field consists of source/destination data that may be
required/generated by the “opcode” to complete the operation. Often
different addressing modes are used to specify these operands.

- The “Comment” is an optional field used by the programmer to
explain how the coded program works. Remember, the “Assembler”
doesn’'t generate the related machine-codes for comments.

- The 80x86 microprocessor supports 117 basic instructions, each of
which can be expressed using one assembly language statement.
Next slide discusses the most common data transfer instruction.

- The remaining 116 instructions, supported by 80x86 assembly language
programs, will be explained in later modules, as needed.

Slide 13: Assembly lanquage Data Transfer Instruction:

- In this slide, a basic assembly language instruction used to copy
byte/word data from one storage location to another is introduced

Mnemonic | Meaning Format Operation Flags affected

MOV Move MOV D,S (S) =(D) None

- Thus, the assembly language statement for this instruction is;
MOV Destination-operand(D) , Source-operand(S)

o Note optional “Label” and “Comment” fields are not included
o the “OpCode” or operation to be performed is specified by a 3

letter abbreviation or mnemonic, “MOV”
o the “Operand” fields consisted of a source data location and
destination or resulted data location separated by a comma.

Such as; MOV AL, BL ; MOV CH,2A,, and MOV AL, [DS:1122]

- In example 1, BL is the source location and AL is the destination location. Thus,
a byte-data stored in BL register of the CPU will be copied into the AL register.

- In example 2, CH register is the destination location and a Hexadecimal data of
2A will be copied into CH register.
- In example 3, the memory location with PA=DS:1122H is the source location

and AL register is the destination location. Thus, this instruction copies byte
data contents of the memory location DS:1122H into AL register.

Slide 14: Assembly language Data Transfer Instruction (cont’'d)

- The list of important operand combinations are shown below:

BIBWEE or accepted operand combination of MOV
instruction

Source operand

Destination operand

AX or AL (accumulator) As in example 1 of

Any Memory location
=> previous slide

CPU internal Registers
Any Memory location => Asin example 3
of previous slide

Any Memory location

CPU internal Registers

AX or AL (accumulator)

CPU internal Registers

Any Memory location CPU internal Registers
= As in example 2

Any Constant numbers
of previous slide
Any Constant numbers P

CPU internal Registers

Any Memory location
| NGEENOWEE or unaccepted operand combination of MOV
instruction (only a few are presented)

Source operand

Destination operand

Any Memory location

Instruction pointer (IP) Cﬁgﬁg:ﬁ 8]; Ei?lf,:ae;f
16-bit register content

Any Memory location

8-bit register content

Segment register Segment register

Constant data Register/memory location

Slide 15: Assembly language Data Transfer Instruction (cont’'d):

Example: For the given values, executing each instruction and find

the content of the destination- operands.

=1122
(e) MOV DH,[SP] = DX=__
QS —2N00

Main Memory
| | 00008, | 1 Byte
000014 5A4
00002 7E
Address/Data bus " =
1-MByte
| Remember. | 10005,| 44,
! i 100064 C8y
| The 8086 processor | 10007y 834
' has 16-bit data bus. !
| The 8088 processor ﬁ;i?” gi“
i has 8-bit data bus. ! H H
They botﬁuave% bit ! 300034 A5y
' address bus and 16-bit ! 30005 B2,
Inﬁt@mgtm@@@f@g (IP)
‘ ‘ | (AX,BX, SI,IP, ..) !
_E:_Eélé"é_e_é_r_ﬁé_r]i"(_c_:'S)
(a) MOV CL,AH = CX = ,ibaj\@bAL [SI] = AX =
(c) MOV [ES:DI] & DH = (d) MOV AX,SP & AX =

_ | QUUU||5|
Solutions: (a)AA34y, (b)3444, (c) content of PA=30003,=904,

(d)10064, (e)B18B
AX

=34564
BX=1239y
CX=AA89
DX=908BH

SP=10064

Base pointer, (BP)

SI=00054

