Handout 4

MOSFET

Sheikh Sharif Iqbal

(Ref: Text book and KFUPM Online course of EE-203)

(Remember to solve all the related examples, exercises problems as given in the Syllabus)
Chapter 4 – MOS Field-Effect Transistors (MOSFETs)

Text book: “Microelectronic Circuits by Sedra and Smith

- Metal-Oxide semiconductor Field-Effect Transistors (MOSFETs):

- MOSFET has been extremely popular since the late 1970s. Like transistors, the current flow between two terminals (Drain to source) in MOSFET are controlled by the third terminal (gate)

- Why MOS Transistors?
 • Takes smaller silicone area on the IC
 • Simple to manufacture
 • No need for biasing resistors.
 • Used in VLSI (very-large-scale integration)

- Comparison between MOSFET & BJT??
 • Can be made smaller /higher integration scale
 • Easier to fabricate /lower manufacturing cost
 • Simpler circuitry for digital logic and memory
 • Inferior analog circuit performance (lower gain)

- Most digital ICs use MOS technology.
- Also recently more and more analog circuits are implemented in MOS technology for lower cost integration with digital circuits in the same chip (IC)
4.1: Device Structure of MOSFET: The name of MOS is apparent from figures

- Four Terminals are Gate, Drain, Source & Body
- Unlike BJT, MOSFET is normally constructed as a symmetrical device (DS)
- Minimum achievable value of L in a particular MOS technology is often referred as the feature size. Intel Pentium-4 uses 0.13 μm technology.
- Lately poly-silicon with high conductivity is used instead of metal to form gates

\[
\begin{align*}
L &= 0.15 \text{ to } 10 \, \mu m, \\
W &= 0.3 \text{ to } 500 \, \mu m, \\
\text{MOS layer} &= 0.02 \text{ to } 0.1 \, \mu m.
\end{align*}
\]
BASIC OPERATIONAL THEORY OF NMOS: N-channel MOSFET considered

- The current controlled mechanism (for drain current) is based on electric field established by the voltage ‘V_{GS}’ applied to control terminal (gate).

- Current (i_D) is conducted by only one type of carrier “electrons (for NMOS or N-channel MOSFET) or holes (for PMOS)”. So FET is also called unipolar transistors.

Physical Operation with No v_{GS}: With no bias voltage is applied to gate, two back-to-back diodes between drain & source prevent the flow of i_D as v_{DS} is applied. ($R_{\text{DS}} \approx 10^{12} \, \Omega$)

Creating a Channel for i_D flow: If ‘S’ & ‘D’ are GNDed and a ‘$+v_{\text{GS}}$’ is applied to ‘G’ holes are repelled from the channel region, leaving behind a carrier-depletion region.

Further increasing V_{GS} attracts minority carrier (e⁻¹’s) from P-substrate into the channel region. When sufficient amount of e⁻¹’s accumulate near the surface of the substrate under the gate, an N region (N-channel) is created-called as the inversion layer.
Applying a Small v_{DS} or if $v_{DS} \approx (0.1$ or 0.2 V) causes a current i_D to flow through the induced N-channel from D to S. The magnitude of i_D depends on the density of electrons in the channel, which in turn depends on v_{GS}. For $v_{GS} = V_t$ (threshold voltage), the channel is just induced and the conducted current is still negligibly small. As, $v_{GS} > V_t$, depth of the channel increases, i_D will be proportional to $(v_{GS} - V_t)$, known as effective voltage. Increasing v_{GS} above V_t enhances the channel, hence it is called enhancement type MOSFET. Note that $i_G = 0$, due to M.O. layer.

Now since the v_{DS} drops across the channel length, this voltages decreases from v_{DS} to 0 volt, as we travel along the channel from drain to source. Thus the voltage between the gate and the points along the channel becomes: v_{GS}-0 at source end and v_{GS}-v_{DS} at the drain end. This shows that the channel don't have even depth, as the depth depends on voltage. Now increasing v_{DS} beyond v_{GS} value causes channel to pinchoff.

- THUS, $(v_{GS} - v_{DS}) > V_t$, or $v_{DS} < (v_{GS} - V_t)$ or $v_{GD} > V_t$ produce continues channel depth at drain end and results the MOSFET to operate in Triode region. Otherwise the MOSFET operates in Saturation region with pincoff channel and $i_D \propto v_{DS}$.
Channel length Modulation: If v_{DS} is further increased from pinched-off channel ($v_{DS_{sat}}$), the channel length is reduced (by moving from drain end). This phenomena is known as “channel length modulation” & its affect on i_D is incorporated by “λ”

Note: Most of the problems here will assume $\lambda=0$
Physical Operation of Enhancement NMOS:

For increasing v_{DS}, v_{DS} appears as a voltage drop across the channel. Voltage across the oxide decreases from v_{GS} at ‘S’ to $(v_{GS} - V_t)$ at ‘D’. The channel depth will be tapered and become more tapered as v_{DS} is further increased.

Eventually, when $(v_{GS} - v_{DS}) = V_t$, the channel will be pinched off (see figures 4.5 & 4.7).

Increasing v_{DS} beyond this value has no effect as i_D saturates. Thus, MOSFET is now operating in the saturation region. Thus, $v_{DSsat} = v_{GS} - V_t$

MOSFET transconductance $k'_n = \mu_n C_{ox}$ is constant depend on the fabrication process.

$\mu_n =$ channel e^{-1} mobility

$C_{ox} =$ cap. of unit area of channel

$\begin{align*}
\text{Triode} & \quad v_{DS} < v_{GS} - V_t \\
\text{Saturation} & \quad v_{DS} \geq v_{GS} - V_t
\end{align*}$

$\begin{align*}
\text{Current saturates because the channel is pinched off at the drain end, and } v_{DS} \text{ no longer affects the channel.}
\end{align*}$

Book Figure 4.6
4.2: Circuit Symbol for Enhancement type

The arrowhead on the source terminal points in the normal direction of current flow. Therefore, it indicates three things: (1) distinguishing the source from the drain, (2) indicates the polarity of the device and (3) designating the terminals.

Three Regions:

- **Cutoff region**
 \[V_{GS} < V_t \]

- **Triode region**
 \[
 V_{GS} > V_t, \text{ and } V_{GD} > V_t
 \]
 \[
 (V_{GD} = V_{GS} + V_{SD} = V_{GS} - V_{DS}) > V_t \Rightarrow V_{DS} < V_{GS} - V_t
 \]
 \[
 i_D = \frac{k'}{2} \frac{W}{L} \left[(V_{GS} - V_t) V_{DS} - \frac{1}{2} v_{DS}^2 \right]
 \]

- **Saturation region**
 \[
 V_{GS} > V_t, \text{ and } V_{GD} = V_{GS} + V_{SD} = V_{GS} - V_{DS} < V_t
 \]
 \[
 i_D = \frac{k'}{2} \frac{W}{L} (V_{GS} - V_t)^2
 \]

Figures from textbook
Example: Use triode expression of \(i_D \), given in eq 4.5(a), to calculate \(r_{DS} \)

For Triode Region

\[
i_D = k'_n \cdot \frac{W}{L} \left[\left(V_{GS} - V_t \right) \cdot V_{DS} - \frac{1}{2} \cdot V_{DS}^2 \right]
\]

However, for small \(V_{DS} \), then \(\frac{1}{2} \cdot V_{DS}^2 \) approaches zero.

The resulting equation then is

\[
i_D = k'_n \cdot \frac{W}{L} \left[\left(V_{GS} - V_t \right) \cdot V_{DS} \right]
\]

To find the drain-to-source resistance

\[
r_{DS} = \frac{V_{DS}}{i_D} \quad \text{if other parameter are given}
\]

We can solve this \(r_{DS} \)

Exercise 1: For Enhancement type NMOS with \(V_t = 1V \) and \(k'_n(W/L) = 0.5 \text{ mA/V}^2 \), find \(i_D \) and whether the circuit below is operating as a switch or an amplifier.

(a) if \(V_{GS} = 4v \) and \(V_{DS} = 2v \)

(b) if \(V_{GS} = 4v \) and \(V_{DS} = 6v \)

CMOS: Cross section of a complementary MOS integrated circuit. Note that the PMOS transistor is formed in a separate \(n \)-type region, known as an \(n \) well. Another arrangement is also possible in which an \(n \)-type body is used and the \(n \) device is formed in a \(p \) well.

Figures from text book
Physical Operation of Enhancement PMOS: P-channel MOSFET.

(a) Simplified PMOS circuit symbol with connected source & body. (b) PMOS circuit. Note that v_{GS} and v_{DS} are negative and i_D flows out of drain.

Since in PMOS, V_t is negative, So $v_{GS} \leq V_t$ is used to induce a channel. Thus, $v_{SG} \geq |V_t|$

To operate in **Triode region**:

$$v_{DS} \geq v_{GS} - V_t$$

(Continuous channel)

$$i_D = k'_p \frac{W}{L} \left[\left(v_{GS} - V_t \right) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

where v_{GS}, V_t, and v_{DS} are negative and $k'_p = \mu_p C_{ox}$

To operate in **Saturation region**:

$$v_{DS} \leq v_{GS} - V_t$$

(Pinned-off channel) or $v_{GD} > V_t$

$$i_D = \frac{1}{2} k'_p \frac{W}{L} \left(v_{GS} - V_t \right)^2 \left(1 + \lambda v_{DS} \right)$$

Neglecting λ,

$$i_D = \frac{1}{2} k'_p \frac{W}{L} \left(v_{GS} - V_t \right)^2$$

Thus to recap PMOS operation, the gate voltage has to be made lower than that of the source by at least $|V_t|$. To operate in Triode region, the drain voltage has to exceed the gate voltage by at least $|V_t|$, otherwise the PMOS operates in Saturation region.

Exa 4.6: Design the circuit of Fig. 4.24 so that the transistor operates in saturation with $I_D = 0.5$ mA and $V_D = +3$ V. Let the enhancement-type PMOS transistor have $V_t = -1$ V and $k'_p (W/L) = 1$ mA/V2. Assume $\lambda = 0$. What is the largest value that R_D can have while maintaining saturation region operation?

The figure is given in next page:

Sol: $V_{GS} = -2$ V: $R_{G1} = 2$ MΩ and $R_{G2} = 3$ MΩ. $R_D = 8$ kΩ

See book pg 268 for solution
4.2.5 & 4.2.6: some Practical Considerations of Enhancement MOS

■ The Body Effect

In ICs, the substrates of all NMOS are usually common and connected to the most negative power supply. If a source is not at this voltage level, the reverse-bias voltage V_{SB} between S and B will widen the depletion region and in turn reduces the channel depth. The result is an increase of V_t:

$$V_t = V_{t0} + \gamma \left(\sqrt{2\phi_f} + V_{SB} - \sqrt{2\phi_f} \right)$$

where $V_t = V_{t0}$ with $V_{SB} = 0$.

ϕ_f is a physical parameter with $2\phi_f$ typically 0.6V, and γ is a fabrication - process parameter.

It follows that the body voltage controls i_D; This is an undesired phenomenon know as the body effect.

Same situation exists in PMOS.

Body effect can cause considerable degradation in circuit performance (as shown in chapter 6 of book)

■ Temperature Effects

Both V_t and k' are temperature sensitive. The magnitude of V_t decrease by about 2mV for every 1°C rise in temperature. This decrease in $|V_t|$ gives rise to a corresponding increase in drain current as temperature is increase. However, because k' decreases with temperature and its effect is a dominant one, the overall observed effect of a temperature increase is a decrease in drain current.

PMOS circuit in previous Exercise 4.6

\[V_{DD} = +5\, \text{V} \]
\[V_D = +3\, \text{V} \]
\[R_G1 \]
\[R_G2 \]
\[R_D \]
\[I_D = 0.5\, \text{mA} \]
4.11: Depletion Type NMOS or n-channel MOSFET’s:
The depletion type MOSFET has similar structure to that of enhancement type but with a **physically implanted** channel (**instead of an induced channel**). Thus an n-channel depletion-type MOSFET always has an n-type silicone region connecting the source and drain (both +n) at the top of the type substrate. Thus, for any \(v_{DS}\) applied between the drain and source, \(i_D\) flows even if \(v_{GS} = 0\). Thus, the channel depth and hence its conductivity is controlled by \(v_{GS}\). Applying a ‘+ \(v_{GS}\)’ enhances the channel by attracting more e\(^{-}\)’s. Applying ‘– \(v_{GS}\)’ is said to deplete/reduce the channel.

![Figures from text book](image-url)
4.3: MOSFET circuits at DC:

EXAMPLE Design the circuit of Fig. 4.20, so that the transistor operates at $I_D = 0.4$ mA $V_D = 1$ V. The NMOS transistor has $V_t = 2$ V, $\mu_n C_{ox} = 20 \mu$A/V2, $L = 10 \mu$m, and $W = 400 \mu$m. Neglect the channel-length modulation effect (i.e., assume that $\lambda = 0$).

Since $V_D = 1$ V means operation in the saturation region, we use the saturation-region expression of i_D to determine the required value of u_{GS}.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_d)^2 \quad \Rightarrow \quad 0.4 = \frac{1}{2} \times 20 \times 10^{-3} \times \frac{400}{10} (V_{GS} - 2)^2$$

This equation yields two values for V_{GS}, 1 V and 3 V. The first value does not make physical sense since it is lower than V_t. Thus $V_{GS} = 3$ V. Referring to Fig. 4.20, we note that the gate is at ground potential; thus the source must be at -3 V, and the required value of R_S can be determined from

$$R_S = \frac{V_S - V_{SS}}{I_D} = \frac{-3 - (-5)}{0.4} \quad \left\{ \begin{array}{l} \text{To establish a dc voltage of} +1 \text{ V at the drain, we must select} \quad R_D = \frac{V_{DD} - V_D}{I_D} = \frac{5 - 1}{0.4} = 10 \text{ k}\Omega \end{array} \right.$$

EXAMPLE Design the circuit to obtain a current I_D of 0.4 mA. Find the value required for R and find the dc voltage V_D. Let the NMOS transistor have $V_t = 2$ V, $\mu_n C_{ox} = 20 \mu$A/V2, $L = 10 \mu$m, and $W = 100 \mu$m. Neglect the channel-length modulation effect (that is, assume $\lambda = 0$).

SOLUTION Because $V_{DG} = 0$, the FET is operating in the saturation region. Thus

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_d)^2$$

$$0.4 = \frac{1}{2} (20)(10^{-3})(100/10)(V_{GS} - 2)^2$$

which yields two values for V_{GS}, namely 4 and 0. The second value obviously does not make physical sense since it is lower than V_t. Thus $V_{GS} = 4$ V, and the drain voltage will be $V_D = +4$ V.

The required value for R can be found as follows: $R = \frac{V_{DD} - V_D}{I_D} = \frac{10 - 4}{0.4} = 15 \text{ k}\Omega$.
4.3: MOSFET circuits at DC:

EXAMPLE Analyze the circuit shown to determine the voltages at all nodes and the currents through all branches. Let $V_\text{f} = 1 \text{ V}$ and $k'_n(W/L) = 1 \text{ mA/V}^2$. Neglect the channel-length modulation effect (i.e., assume $\lambda = 0$).

SOLUTION Since the gate current is zero, the voltage at the gate is simply determined by the voltage divider formed by the two $10-\text{M}\Omega$ resistors,

$$V_G = 10 \times \frac{10}{10 + 10} = +5 \text{ V} \quad \Rightarrow \quad V_{GS} = 5 - 6I_D \quad \Rightarrow \text{ Assume Saturated}$$

Thus

$$I_D = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2 = \frac{1}{2} \times 1 \times (5 - 6I_D - 1)^2$$

which results in the quadratic equation: $18I_D^2 - 25I_D + 8 = 0$

This equation yields two values for I_D: 0.89 mA and 0.5 mA. The first value results in a source voltage of $6 \times 0.89 = 5.34$, which is greater than the gate voltage and does not make physical sense. Thus

$$\{v_{GS} = (v_G - v_S)\} > V_t$$

$$I_D = 0.5 \text{ mA}$$

$$V_S = 0.5 \times 6 = +3 \text{ V}$$

$$V_{GS} = 5 - 3 = 2 \text{ V}$$

$$V_D = 10 - 6 \times 0.5 = +7 \text{ V}$$

Since $V_D > V_G - V_t$, the transistor is operating in saturation, as initially assumed.

Exercise-2: Solve the above problem in Fig.1, after replacing NMOS with PMOS (P-channel MOSFET) with $V_{t(\text{PMOS})} = -1 \text{ V}$. **Hint**: see example 4.5 (NMOS) & 4.6 (PMOS) solutions
CMOS DC circuits

Assuming $k'_n(W_n/L_n) = k'_p(W_p/L_p) = 1 \text{ mA/V}^2$, $V_{in} = -V_{tp} = 1 \text{ V}$ and $\lambda = 0$

Q_P = cut off, as V_{GS} of zero

Q_P = OFF

Q_N = triode region

v_o will be negative, $v_{GD} > V_t$, or $V_{DS} < (v_{GS} - V_t)$

Biasing Using Constant Current source

Find V_{OV}, V_{GS}, V_{G}, V_{S}, V_{D}.

$V_t = 1.5 \text{ V}$, and

$k'_n(W/L) = 1 \text{ mA/V}^2$

$V_{DD} = 10 \text{ V}$

$R_D = 1.5 \text{ k} \Omega$

$I_D = 0.5 \text{ mA}$

$V_D = V_{DD} - R_D I_D$

$V_{OV} = V_{GS} - V_t$

$R_G = 4.7 \text{ M} \Omega$

$V_{SS} = -10 \text{ V}$

Figures from text book

assume small v_{DS}:

$I_{DN} = k'_n(W_n/L_n)(V_{GS} - V_t)V_{DS}$

$= 1[2.5 - (-2.5) - 1][v_O - (-2.5)]$

also From the circuit diagram:

$I_{DN} (\text{mA}) = \frac{0 - v_O}{10 (\text{k} \Omega)}$

These two equations yield:

$I_{DN} = 0.244 \text{ mA} : v_O = -2.44 \text{ V}$
Summary of DC biasing a MOS amplifier in discrete circuits:

- Single power supplier
- Since $I_G=0$, R_{G_1} and R_{G_2} can be very large, allowing large R_{in}
- R_S provides negative feedback
- R_D should be large for high gain and should be small for large signal swing.

- Two power suppliers
- Simpler bias arrangement.
- R_G establishes a dc ground and presents a high input resistance to a signal that may be capacitively coupled to the gate.

- Even simpler and more direct bias.
- A constant-current source I feeds the source terminal.

- Large resistor R_G forces the V_G to be equal to V_D.
- The output signal swing should be limited in the negative direction to $|V_i|$.

See text book
4.6: Small signal models for MOSFET amplifier:

(a) neglecting the dependence of i_D on v_{DS} in saturation region of operation (channel-length modulation effect);

(b) including the effect of channel-length modulation modeled by output resistor (r_o)

(c) T-model with output resistance, $r_o = |V_A|/I_D = 1/(\lambda I_D)$

Remember that for PMOS: $V_t = -$ and
Calculating small signal parameter for MOSFET Amplifier:

MOSFET transconductance

Formula 1: \[g_m = k'_n \frac{W}{L} (V_{GS} - V_t) \]

It indicates that \(g_m \) is proportional to the \(k' \), W/L ratio and \((V_{GS} - V_t) \). However, a large \(V_{GS} \) reduces the allowable signal swing at the drain.

Formula 2: \[g_m = \sqrt{2} k'_n \left(\sqrt{\frac{W}{L}} \right) \sqrt{I_D} \]

It shows:

1. for a given MOSFET, \(g_m \propto \) the square root of the dc bias current.
2. At a given bias current, \(g_m \propto \sqrt{W/L} \)

In contrast, the \(g_m \) of BJT \(\propto \) the biasing current \(I_C \) and is independent of the geometry.

Remember for PMOS, the calculation of \(g_m \), \(r_o \) and \(K'_n \) is calculated using \(|(V_{gs} - V_t)| \), \(|V_A| \) or \(|\lambda| \) and replacing \(\mu_n \) with \(\mu_p \), respectively. See book page 297

Here for NMOS \(K'_n = \mu_n C_{ox} \)

Formula 3: \[g_m = \frac{I_D}{(V_{GS} - V_t)/2} \]

As compared with that of BJT, for which \(g_m = \frac{I_C}{V_T} \)

The transconductance value for MOSFET is much smaller than that of BJT in light of the fact that the values of \((V_{GS} - V_t)/2 \) are at least 0.1 V or so.

In spite of their low \(g_m \), MOSFETs have many other advantages, such as high \(R_{in} \), small size, low power dissipation and ease of fabrication.
MOSFET As An Amplifier – Small-Signal Analysis:

Example 4.10 Figure 4.38 (a) shows a discrete enhancement MOSFET amplifier in which the input signal v_i is coupled to the gate via a large capacitor, and the output signal at the drain is coupled to the load resistance R_L via another large capacitor. We wish to analyze this amplifier circuit to determine its small-signal voltage gain and its input resistance. The transistor has $V_t = 1.5$ V, $k'_n(W/L) = 0.25$ mA/V2, and $V_A = 50$ V. Assume the coupling capacitors to be sufficiently large so as to act as short circuits at the signal frequencies of interest.

Solution

We first evaluate the dc operating point as follows.

As $I_G=0$, $V_{RG}=V_{10M}=0$, Thus $V_G=V_D$. Since $V_S=0$, $V_{GS}=V_{DS}$ transistor must operate in saturation region as $V_{DS}>(V_{GS}-V_t)$

$$I_D = \frac{1}{2} \times 0.25(V_{GS} - 1.5)^2$$
$$I_D = \frac{1}{2} \times 0.25(V_D - 1.5)^2$$

$$V_D = 15 - R_D I_D = 15 - 10 I_D$$

Two solutions: $I_{D1} = 1.0589$ mA and $V_D = 4.4$ V
$I_{D2} = 1.721$ mA and $V_D < 0$
which is not physically meaningful

So, $V_D = (15 - i_D \times 10K) = 4.4$ V $\Rightarrow V_{DS} \Rightarrow V_{GS}$
The value of g_m is given by
\[
g_m = k' \frac{W}{L} (V_{GS} - V_t)
\]
\[
= 0.25(4.4 - 1.5) = 0.725 \text{ mA/V}
\]

The output resistance
\[
r_o = \frac{V_A}{I_D} = \frac{50}{1.06} = 47 \text{ k}\Omega
\]

Since R_G is very large ($10\text{M}\Omega$), the current through it can be neglected.

\[
v_o \approx -g_m v_{gs} (R_D // R_L // r_o)
\]

Since $v_{gs} = V_i$, the voltage gain is
\[
\frac{v_o}{V_i} = -g_m (R_D // R_L // r_o)
\]
\[
= -0.725(10//10//47) = -3.3 \text{ V/V}
\]

To evaluate the input resistance R_{in}, we note that the input current i_i
\[
i_i = \frac{(V_i - V_o)}{R_G}
\]
\[
= \frac{V_i}{R_G} \left(1 - \frac{V_o}{V_i}\right)
\]
\[
= \frac{V_i}{R_G} [1 - (-3.3)] = 4.3 \frac{V_i}{R_G}
\]

Thus,
\[
R_{in} = \frac{V_i}{i_i} = \frac{R_G}{4.3} = \frac{10}{4.3} = 2.33 \text{ M}\Omega
\]

- Remember channel length modulation is neglected in this solution.
- Solve exercise 4.24, 4.28 and hand-in next class.
4.7: **Common Source (CS) Amplifier**: Single stage MOS Analysis

\[G_v = \frac{R_{in}}{R_{in} + R_{sig}} \]

\[A_v = -\frac{R_G}{R_G + R_{sig}} g_m (r_o \parallel R_D \parallel R_L) \]

\[R_{out} = r_o \parallel R_D \]

\[\begin{align*}
 i_g &= 0 \\
 R_{in} &= R_G \\
 v_i &= v_{sig} \frac{R_{in}}{R_{in} + R_{sig}} = v_{sig} \frac{R_G}{R_G + R_{sig}} \\
 v_i &\approx v_{sig} \quad v_{gs} = v_i \\
 v_o &= -g_m v_{gs} (r_o \parallel R_D \parallel R_L) \\
 A_v &= -g_m (r_o \parallel R_D \parallel R_L)
\end{align*} \]
4.7.4: **Common Source (CS) Amplifier with source resistance (Rs):**

\[
R_{in} = R_i = R_G \quad \text{and} \quad R_{out} = R_D
\]

As \(i_g = 0 \),

\[
v_i = \frac{R_G}{R_G + R_{sig}} v_{gs}
\]

here \(v_{gs} \) is only a fraction of \(v_i \).

\[
v_{gs} = v_i \frac{g_m}{g_m + R_s} = \frac{v_i}{1 + g_m R_s}
\]

\(v_{gs} \propto 1/R_s \)

Rs introduce ‘-’ feedback, that \(\uparrow \) the BW but \(\downarrow \) the gain by \((1 + g_m R_s)\) w.r.t CS

\[
i_d = i = \frac{v_i}{1 + R_s} = \frac{g_m v_i}{1 + g_m R_s}
\]

\(R_s \) reduces \(i_d \) by the factor \((1 + g_m R_s)\).

\[
v_o = -i_d (R_D \parallel R_L)
\]

\[
= -\frac{g_m (R_D \parallel R_L)}{1 + g_m R_s} v_i
\]

\[
A_v = -\frac{g_m (R_D \parallel R_L)}{1 + g_m R_s} v_i
\]

\(r_0 \) is neglected

Figures from text book
4.7: **Common Gate (CG) Amplifier**: acts as Unity gain current amplifier

\[R_{\text{in}} = \frac{1}{g_m} \; ; \; \quad R_{\text{out}} = R_o = R_D \; ; \quad v_i = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} v_{\text{sig}} = \frac{1}{g_m} \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} v_{\text{sig}} \frac{1}{1 + g_m R_{\text{sig}}} = v_{\text{sig}} \frac{1}{1 + g_m R_{\text{sig}}}
\]

\[i_i = \frac{v_i}{R_{\text{in}}} = \frac{v_i}{1/g_m} = g_m v_i \; ; \; \quad i_d = i = -i_i = -g_m v_i
\]

\[v_o = v_d = -i_d (R_D \parallel R_L) = g_m (R_D \parallel R_L) v_i
\]

\[A_v = g_m (R_D \parallel R_L)
\]

\[G_v = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} A_v = \frac{1}{g_m} \frac{1}{R_{\text{in}} + R_{\text{sig}}} A_v = \frac{A_v}{1 + g_m R_{\text{sig}}}
\]
4.7: **Common Drain (CD) Amplifier**: acts as voltage amplifier

\[R_{\text{in}} = R_G \quad ; \quad R_{\text{out}} = \frac{1}{g_m} \parallel r_o \]

\[v_i = v_{\text{sig}} \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} = v_{\text{sig}} \frac{R_G}{R_G + R_{\text{sig}}} \quad ; \quad R_G \text{ is much larger than } R_{\text{sig}} \quad ; \quad v_i \cong v_{\text{sig}} \]

\[v_o = v_i \frac{R_L \parallel r_o}{(R_L \parallel r_o) + \frac{1}{g_m}} \]

\[A_v = \frac{R_L \parallel r_o}{(R_L \parallel r_o) + \frac{1}{g_m}} \]

\[G_v = \frac{R_G}{R_G + R_{\text{sig}}} \left(\frac{R_L \parallel r_o}{(R_L \parallel r_o) + \frac{1}{g_m}} \right) \]

which approaches unity for \(R_G \gg R_{\text{sig}}, r_o \gg 1/g_m \), and \(r_o \gg R_L \).
4.4.4: **Operation as a linear Amplifier:** see page 279 of book for more explanation

Load line is drawn between the two extreme biasing points; (1) when \(i_D = 0 \), \(v_o = V_{DD} \); (2) since slope = \(1/R_D \), \(i_D = V_{DD}/R_D \) (when max \(i_D \) is flows)

As \(v_i \) varies, \(v_{GS} \) also varies and the Q-point moves along the load line. Thus, wrong Q-point will cause distortion in \(i_d \)

Triangular \(v_i \) is superimposed on a DC bias voltage

FIG

Figures from text book