Answer all three questions. All three questions carry equal marks.

1(a). Find the address of Port A, Port B, Port C and the Control Reg. of the following 8255 interface to 8088 Microprocessor. Put your answer in Hex in the specified box below.

Remember to use 0's for don't cares address pins.
1(b). If the circuit of question 1(a) is operating in **Mode-0** of Isolated I/O interface, write a program to:

- (a) **Input** data Byte using “Port-B”
- (b) Inverted Least Significant Nibble of the inputted data and **Output** them via Port C-Upper

Note: unused ports are configured as output-ports AND don’t care address pins ➔ 0

Write the Program within the given lines.

```
TITLE  "Question 1(b)"
.MODEL  SMALL
.STACK  032H
.DATA
.CODE
    MOV AX, @DATA
    MOV DS, AX

    ___________________________
    ___________________________
    ___________________________
    ___________________________
    ___________________________
    ___________________________
    ___________________________

    MOV AX, 4C00H
    INT 21h

END
```
2(a). Execute the following program and find the contents of the required registers and the memory contents of the stack segment. (Assume \textit{L1}=4351_{16})

```
Title "Major \\
.MODEL small \\
.STACK 32 \\
.DATA \\
   VAR1  DW  0506H, 0708H, 080AH \\
   VAR3  DB   B1H, C2H, D0H \\
.CODE \\
   MOV     AX,@DATA \\
   MOV     DS,AX \\
   MOV     SP,00FD \\
   H \\
   LEA      SI,VAR1 \\
   MOV     BX,wordptr [SI] \\
   PUSH    BX \\
   LEA       BX, VAR3 \\
   XOR      AX,AX \\
   JC \textit{L1} \\
   XLAT \\
   PUSH    AX \\
   CALL    SUB1 \\
\textit{L1} : \\
   POP      BX \\
   POP       DX \\
   MOV     AX,4C00H \\
   INT \textit{21}\_H \\
   SUB1   PROC NEAR \\
   MOV    CX,SP \\
   PUSH   CX \\
   ADD     SP,02_H \\
   RET \\
   ENDP \\
END
```

Write the appropriate values:

<table>
<thead>
<tr>
<th>Stack Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS:00FF_H</td>
</tr>
<tr>
<td>SS:00FD_H</td>
</tr>
<tr>
<td>SS:00FB_H</td>
</tr>
<tr>
<td>SS:00F9_H</td>
</tr>
<tr>
<td>SS:00F7_H</td>
</tr>
<tr>
<td>SS:00F5_H</td>
</tr>
</tbody>
</table>

After the program execution find:

- BX = ________H \\
- DX = ________H \\

2(b). Write a program that will use \textit{“String Instruction”} and \textit{“REP”} prefix to initialize Fifteen byte-wide memory locations, starting from 1230_{16}, with an initial value of 78_{16}. \textit{Assume} that the CPU registers are already initialized as: DS=ES=SS=8000_{16} and all flags=‘0’. Use \textbf{maximum 4-line} of program code

```
TITLE “question 2b” \\
.MODEL SMALL \\
.STACK 032H \\
.CODE \\
   MOV AX,4C00H \\
   INT 21h \\
END
```
3(a). Write approximate **steps** required to complete **output bus-cycle** of **Port B** operating in **Mode 1**. The timing diagram is also given below.

3(b). Write one difference between Minimum & Maximum mode of operation: