EE 405 - Microwave Transmission

Assignment # 3:

Solve the following problems using HAND-CALCULATION and CAEME software and Tabulate the answers

- 1. A transmission line is 0.25λ long and terminated in a load impedance of $(100 + j100) \Omega$. The characteristic impedance of the line is $Z_0 = 50 \Omega$. The propagation constant $\gamma = 0 + j20.9$ /m. Find the reflection coefficient at the load, the input impedance of the line, the reflection coefficient at the load and the input terminals.
- 2. Repeat case (1) after changing the propagation constant to $\gamma = 0.05 + j20.9$ /m.
- 3. A high frequency transmission line has $R = 5 \Omega/m$, $L = 5.2 \times 10^{-8} H/m$, $G = 6.2 \times 10^{-3} S/m$, and $C = 2.13 \times 10^{-10} F/m$. The signal frequency is 4 GHz and the load impedance is $(100 + j100) \Omega$. Calculate Z_0 of the line and the propagation constant γ ,

the normalised load impedance, the reflection coefficient at the load, the sending end impedance and the reflection coefficient at the sending end of the line.

4 Analyze the transmission line configurations shown in figure 2 and 3. Assume the lines

have propagation constant of $\gamma=0+j20$, find the <u>input impedances</u> of point A, B, C.

5. Compare the values of Z_{in} 's at point A & B of figure 3 and compare characteristics of the 0.25 λ and λ length transformers.

Figure 3

<u>Data Table</u>	Calculate, Z _{in}	Simulated, Z _{in}
At point B of <u>figure 2</u>		
At point A of <u>figure 2</u>		
At point C of figure 3		
At point B of figure 3		
At point A of figure 3		