King Fahd University of Petroleum & Minerals **Electrical Engineering Department** EE-407; Final Exam.

Prob.1	Prob.2	Prob.3	Prob.4	Prob.5	Total

Answer all the four questions. TIME : 2 hour 30 minutes.

Name:	I.D.	Sec.

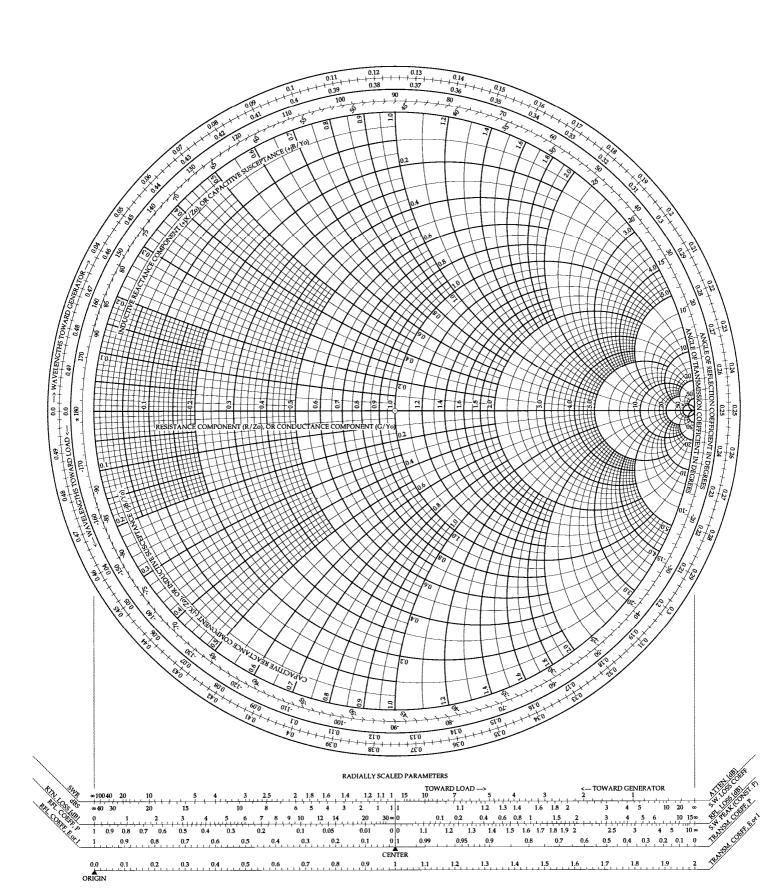
Q.1(a) If a 10 GHz wave is propagating through a material with $\mu_r = 11$ and $\sigma = 5.11 \text{ x } 10^7 \text{ Mhos/m}$, find the related

(i) Skin depth

(ii) Surface resistance (assume the material is of square shape).

GIVEN: $\mu_0 = 1.2566 \times 10^{-6}$; $\epsilon_0 = 8.84194 \times 10^{-12}$

Q.1(b) The characteristic impedance of a transmission line is $Z_0=100 \Omega$. If it is terminated in a load of $Z_L=100+j100 \Omega$ and the propagation constant of the line is 0.54+j3.53 per meter, calculate (without using the smith chart);


- (i) The transmission coefficient on the line
- (ii) The reflection coefficient at a point 2 meter away from the load.

Q.2 (a) In the figure, all the transmission lines are loss-free and with $\lambda \neq \lambda_0$. If the impedance at junction AA' is 75 Ω , find the propagation constant (γ) .

Q.2 (b) A load impedance of $Z_L=70\Omega$ has to be matched to a 50 Ω line using a parallelly connected shorted-circuited single-stub matching, as illustrated in figure. Use smith-chart to determine the shortest required length l_1 and l_2 in fractions (terms) of wavelengths.

- **Q.3** (a) A microstrip quarter-wavelength-transformer is to match a transistor input with a 50 Ω microstrip feed line. If the transformer has w =0.762 mm, h= 0.635 mm, t=0.035mm and ε_r =10. If the circuit is operating at a frequency of **<u>3 GHz</u>**, calculate the
 - (i) Effective dielectric-constant of the transformer.
 - (ii) The impedance of the transformer.

Q.3(b)

The scattering parameter for transistor is given by: $S_{11}=0.65 \angle -140^{\circ}$; $S_{21}=2.4 \angle 50^{\circ}$; $S_{12}=0.04 \angle 60^{\circ}$; $S_{22}=0.70 \angle -65^{\circ}$. The transistor is used in a common-source amplifier at f=4 GHz. The signal source can be represented by a 10µV EMF in series with a 50 Ω resistance, and the load is 50 Ω . Find

- (i) Determine the stability of the device
- (ii) Calculate the total gain
- (iii) Show how to apply DC biasing of an Microwave transistor

Q.4(a) Briefly describe the difference between Ohmic contact and Shottky contact.

- Q.4(b) Using microstrip stepped impedance technology, design a maximally flat low pass filter (that begins with shunt element) with passband of 0 to 3 GHz and an attenuation of 20dB at 5 GHz. Assume $Z_0=50 \Omega$ and for the microstrip $Z_l=15 \Omega$, $Z_h=150 \Omega$, $\varepsilon_r=4.2$, h=0.79 mm, t=0 to find
 - (i) Scaled values of the reactive elements and <u>draw</u> the circuit.
 - (ii) The electrical length of the 1^{st} <u>two elements</u> of the filter.