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Model reduction of bilinear systems described by

input–output difference equation

S. A. AL-BAIYAT

A class of single input single output bilinear systems described by their input–output
difference equation is considered. A simple expression for the Volterra kernels of the
system is derived in terms of the coefficients of difference equation. An algorithm,
based on the singular value decomposition of a generalized Hankel matrix, is also
developed. The algorithm is then used to find a reduced-order bilinear state-space
model. The Hankel approach will be extensively studied under different data length
cases and different orders of the state-space models. A numerical example is presented
to illustrate the effectiveness of the proposed algorithm.

1. Introduction

Many control systems encountered in practice may
not be adequately described by first-principle models.
Modelling of such processes is often achieved by using
a parametric external model based on input–output
data (Diaz and Desrochers 1988, Haber and
Unbehaven 1990). The most well known of these
models are the Volterra series expansion, the autoregres-
sive moving average (ARMA) and neural networks
(Mohler 1991, Levin and Narendra 1995). In particular,
the Volterra series have proven to be valuable tools
and are used extensively in modelling of nonlinear
systems (Brockett 1976, D’Alessandro et al. 1974). It
expands the impulse response model of a linear system
by representing nonlinearity as a part of higher order
impulses termed kernels.
In spite of their success in characterizing the input–

output relationship, the external models alone are not
suitable for the analysis and design of control systems.
On the other hand, analysis and control applications,
such as stability, controllability, observability and feed-
back design, are well understood in the state-space set
up (Atassi and Khalil 2001, Serrani et al. 2001). One
of the objectives of the present paper is to bridge
the gap between the two modelling approaches by

finding a reduced-order state-space model for the given
input–output model for bilinear systems.

Bilinear systems are considered as a subclass of non-
linear systems under the assumption of linearity in the
state or in the control, but not jointly. Interest in study-
ing bilinear systems has grown over the years, mainly
because such systems are general enough to model
several important processes in engineering, economics,
biology, ecology, etc. (Mohler 1991), and at the same
time they are specific enough to support a rich
mathematical structure (D’Alessandro et al. 1974).
Moreover, bilinear systems can be used to approximate
quite general nonlinear systems (Brockett 1976).

The approximation of higher-order complex systems
to lower-order models have attracted the attention of
many researchers during the past two decades (Moor
1981, Pernebo and Silverman 1982, Muscato 2000).
Various model reduction schemes have been proposed
in the literature. Early methods were concentrated on
the retention of dominant poles in the reduced-order
model, as in aggregation methods, or the matching of
the several moments of the original systems, as in
Pade approximation methods. However, one approach
by Moor has dramatically changed the status of model
reduction. This approach is the balanced realization.
Balanced model reduction of linear dynamic systems
proved to be a very efficient scheme for the approxima-
tion of large-scale systems. In this approach, strongly
controllable and strongly observable states in a balanced
representation are retained in the reduced-order model
as the dominant part of the original higher-order
system.
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Balancing theory has the advantage of being com-
putationally simple using standard matrix software.
This simplicity has formalized a balancing approach in
several directions. The stability issue was addressed by
Pernebo and Silverman (1982) in which it was shown
that the reduced-order system retains its stability,
balancing and minimality properties. The issue of
error between the full- and reduced-order systems
was addressed by many researchers. Two popular per-
formance norms, H1 and H2, were used to quantify
the closeness between the full- and reduced-order
models. Enns (1984) and Wang et al. (1999) and many
others have used the H1 norm. The H2 norm was
used by Spanos et al. (1992) and Diab et al. (1998),
just to name a few.
An alternative equivalent formulation of the model

reduction problem is based on the singular value decom-
position of the Hankel matrix. This approach is very
important if the available information is the input–
output representation or the input–output data of the
system. Many algorithms based on the Hankel matrix
and which compute realizations of linear systems exist
in the literature. The most widely known is that of Ho
and Kalman (1965). Bettayeb (1981) has used this algo-
rithm to find a reduced-order model equivalent to the
reduced-order model resulting from Moor’s balanced
reduction. The Hankel matrix was also used by Kung
(1978) to find a reduced-order realization. Sreeram and
Agathoklis (1991) used a weighted impulse response
Gramian to find a reduced-order model for single
input single output discrete time systems. The approach
was developed further to the multi-input multi-output
by Ang et al. (1995). Xiao et al. (1997) have extended
the work of Ang et al. to two-dimensional systems.
The success of the application of a balanced model

reduction scheme to several practical systems motivated
many researchers to generalize the balancing concept to
more general dynamic systems. State-space balanced
representation and balanced model reduction of bilinear
systems have been treated by Hsu et al. (1983) and
Al-Baiyat et al. (1994). Zhang and Lam (2002) have
proposed an H2 model reduction method for
continuous time bilinear systems. Moreover, an explicit
H2 norm error bound was also given in that approach.
Recently Zhang et al. (2003) have investigated the
stability issue of reduced-order discrete time bilinear
systems and under some reachability or observability
condition have shown that the reduced-order system
is stable. As mentioned above, the literature is quite
limited for the model reduction problem of bilinear sys-
tems and much more is needed to generalize many of the
properties of the model reduction for linear systems to
bilinear systems.
This paper considers a class of bilinear discrete-time

systems described by a input–output difference equation

and investigates the idea of finding a reduced state-space
bilinear model. One of the main contributions is the
finding of exact explicit expressions of impulse response
kernels of bilinear systems in terms of coefficients of
bilinear difference equations. The paper also provides
an algorithm for finding a reduced-order state-space
model of the given input–output model. In the algo-
rithm, the system Hankel matrix is formed first and
then singular value decomposition on this matrix is
performed to identify a bilinear state-space model of
any order. This last step is very robust as a consequence
of the robust perturbation property of the singular value
decomposition. In this work, the Hankel approach will
be extensively studied under different data length cases
and different orders of the state-space models.

It is well known in the literature that model reduction
algorithms based on the Hankel matrix approach lend
themselves to system identification (Diab et al. 1997,
Xiao et al. 1997). Both concepts are based on singular
value decomposition of the Hankel matrix. Moreover,
most of the available algorithms are extensions to
the work started by Kung (1978). The proposed algo-
rithm in this work can also be used for the identification
problem.

2.. Problem statement

Consider a single input single output discrete-time
bilinear system described by the following input–
output difference equation:

yðkÞ ¼
Xs

i¼1

aiyðk� iÞþ
Xs

i¼1

biuðk� iÞ

þ
Xs

i¼1

Xi

j¼1

�ijyðk� iÞuðk� jÞ,

ð1Þ

where u(k) 2 R and y(k) 2 R are the input and output of
the system, respectively.

These types of difference equations can be found
either from available data or from mathematical model-
ling. In the former case, measurement data are fitted by
nonlinear regression, for example to the above form of
difference equations. In the later case, physical laws
and relations lead, generally, to nonlinear or bilinear dif-
ferential or difference equations. In the continuous time
modelling case, a further step of discretization is done to
obtain the difference equation.

Depending on the nature of the data and taking the
system into consideration, the modelling leads to either
stochastic difference equations (u(k) above is a stochas-
tic input) or frequently called time series (Priestley
1988), or to deterministic difference equations where
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the input is a deterministic input. The present work will
concentrate on deterministic difference equations.
The first issue is to derive a simple expression for

the Volterra kernels in terms of the coefficients of the
bilinear difference equation.
Second, we address the issue of finding a reduced-

order bilinear state-space model of the form:

xðkþ 1Þ ¼ AxðkÞ þNxðkÞuðkÞ þ buðkÞ ð2aÞ

yðkÞ ¼ cxðkÞ, ð2bÞ

where x(k)2Rr is the state vector, u(k) is a scalar input,
y(k) is a scalar output, and {A,N, b, c} are matrices of
proper dimensions.

3. Preliminaries

This section reviews useful definitions and results
related to the input–output representation and the
realization theory of bilinear systems. The results will
be needed in what follows and can be found in
D’Alessandro et al. (1974) and Isidori (1973). We start
by defining the reachability matrix for the nth-order
system described by equation (2) as follows:

Rn ¼ P1 P2 . . . pn
� �

, ð3aÞ

where

P1 ¼ b ð3bÞ

Pi ¼ ½APi�1 NPi�1� i � 2: ð3cÞ

The state space of system (2) is reachable if and only if

rankRn ¼ n: ð4Þ

Similarly, the observability matrix for system (2) is
defined as follows:

On ¼

Q1

Q2

..

.

Qn

2

6664

3

7775, ð5aÞ

where

Q1 ¼ c, Qi ¼
Qi�1A
Qi�1N

� �
i � 2: ð5bÞ

The state space of system (2) is observable if and only if

rankOn ¼ n: ð6Þ

An interesting external description for system (2) with
zero initial conditions is given by the relation (Isidori
1973):

yðkÞ ¼
Xk

j¼1

wjujðk� jÞ k ¼ 1, 2, 3, . . . , ð7Þ

where wj is a 1� 2( j–1) row vector, whose elements repre-
sent the discrete Volterra kernels, defined recursively
from the matrices A, N, b, c of (2) as follows:

P1 ¼ b ð3bÞ

Pi ¼ ½APi�1 NPi�1� i ¼ 2, 3, 4, . . . ð3cÞ

wj ¼ cPj j ¼ 1, 2, 3, . . . : ð8Þ

The 2( j–1)� 1 column vector uj(k–j) is defined recursively
from the input sequence of system (2) as follows:

u1ðhÞ ¼ uðhÞ

ujðhÞ ¼
uj�1ðhÞ

uj�1ðhÞuðhþ j � 1Þ

� �
j ¼ 2, 3, 4, . . . : ð9Þ

Isidori used the infinite sequence {w1,w2,w3, . . . ,wj, . . .}
to define a generalized Hankel matrix for the bilinear
system (2). The generalized Hankel matrix is constructed
as follows:

S1j ¼ wj , j ¼ 1, 2, 3, . . . : ð10Þ

Sij (i¼ 2, 3, . . .; j¼ 1, 2, . . .) is obtained from Si–1, jþ1 with
this rule: form the partition

Si�1, jþ1 ¼ S1
i�1, jþ1 S2

i�1, jþ1

� �
ð11Þ

assigning the same number of columns to both blocks
on the right-hand side and put

Sij ¼
S1
i�1, jþ1

S2
i�1, jþ1

" #
: ð12Þ

Then the infinite Hankel matrix is defined as

S ¼

S11 S12 . . .
S21 S22 . . .
: :
: : . . .
: :

2

66664

3

77775
ð13Þ

and the finite Hankel matrix SM0,M as the upper left-
hand part of the matrix S. The dimension of the finite
Hankel matrix is (2M

0

–1)� (2M–1).
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Two Hankel matrices S1
M
0
,M

and S2
M
0
,M

are needed in
the subsequent development. Those matrices are formed
from the matrix S

M
0
,Mþ1

as follows:

S1
M
0
,M
¼ set of columns f2, 4� 5, 8� 11, . . . ,

2M � ð3 � 2M�1 � 1Þg of the matrix S
M
0
,Mþ1

:

Similarly

S2
M
0
,M
¼ set of columns f3, 6� 7, 12� 15, . . . , 3 � 2M�1

� ð2Mþ1 � 1Þg of the matrix SM
0
,Mþ1:

A bilinear state-space model is obtained from full
rank factorization of SM0,M (Isidori 1973):

S
M
0
,M
¼ OM0RM , ð14Þ

where RM and OM are the reachability and the observa-
bility matrices defined in (3) and (5), respectively.
The state-space matrices A and N are then obtained as

least square solutions to

S1
M
0
,M
¼ OM

0ARM ð15Þ

S2
M
0
,M
¼ OM

0NRM : ð16Þ

While the matrix b is the first column of RM and c is the
first row of OM.

4. Calculation of Volterra kernels from the

difference equation

The Hankel matrix for linear systems proves to be
very useful in many areas of research such as realization
theory (Ho and Kalman 1965), model reduction and
identification (Kung 1978). The generalized Hankel
matrix plays the same role for a bilinear system as
does the Hankel matrix for a linear system. Isidori
(1973) used the generalized Hankel matrix extensively in
the realization problem of bilinear systems. Hsu et al.
(1983) proposed an algorithm to find a reduced-order
model based on the Hankel approach.
The estimation of the kernels of the bilinear systems

needed to form the generalized Hankel matrix is a
difficult task, as pointed out by many researchers
(Diaz and Desrochers 1988). In this section, the kernels,
hence the generalized Hankel matrix, will be obtained
for bilinear systems characterized by difference
equation (1).

Expressions for wi in terms of the coefficients of the
difference equation (1) are obtained by equating the
output y(k) of equation (7), for every k, with the recur-
sive expression of y(k) in equation (1). Expressions for
the first three terms, y(k), k¼ 1, 2, 3, with zero initial
conditions, are:

yð1Þ ¼ b1uð0Þ ð17Þ

yð2Þ ¼ a1yð1Þ þ b1uð1Þ þ b2uð0Þ þ �11yð1Þuð1Þ

¼ a1b1 þ b2 �11b1
� � uð0Þ

uð0Þuð1Þ

" #
þ b1uð1Þ ð18Þ

yð3Þ ¼
X2

1

ajyð3� jÞ þ
X3

1

bjuð3� jÞ þ �11yð2Þuð2Þ

þ
X2

1

�2jyð1Þuð3� jÞ

�
a1ða1b1 þ b2Þ þ a2b1 þ b3 a1�11b1 þ �22b1

�11ða1b1 þ b2Þ þ �21b1 �11�11b1
�

uð0Þ

uð0Þuð1Þ

uð0Þuð2Þ

uð0Þuð1Þuð2Þ

2

666664

3

777775
þ a1b1 þ b2 �11b1
� �

�
uð1Þ

uð1Þuð2Þ

" #
þ b1uð2Þ:

ð19Þ

By comparing relations (17–19) with y(k), k¼ 1, 2, 3, in
equation (7), the first three kernels are identified as:

w1 ¼ b1 ð20Þ

w2 ¼ a1b1 þ b2 �11b1
� �

ð21Þ

w3 ¼
�
a1ða1b1 þ b2Þ þ a2b1 þ b3 a1�11b1 þ �22b1

�11ða1b1 þ b2Þ þ �21b1 �11�11b1
�
: ð22Þ

Similarly, the general ith-order kernel is obtained from
the following expressions:

w1 ¼ b1

wi ¼
Xi�1

j¼1

aj �wwiði�jÞ þ
�bbi þ

Xi�1

j¼2

Xi�1

k¼j

�kjŵw
kj
iði�kÞ

Xi�1

j¼1

�j1 �wwiði�jÞ

" #

i � 2, ð23Þ
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where the matrices �wwiði�jÞ, �bbi and ŵwkj
iði�kÞ are of dimension

1� 2i–2 and are defined as:

�wwiði�jÞ ¼ wi�j 0 0 . . . 0
� �

,

number of zeros ¼ 2i�2 � 2i�j�1 ð24Þ

�bbi ¼ bi 0 0 . . . 0
� �

ð25Þ

ŵwkj
iði�kÞ ¼ 0 0 . . . 0 wi�k 0 0 . . . 0

� �
, ð26Þ

where wi–k is in the (1þ2i–j–1) position.
These kernels are used to form the Hankel matrices

in (13). Note, for a second-order system (s¼ 2), the
first two kernels, (20) and (21), are given by Bartee
and Georgakis (1992).

5. Low-order Hankel approximation

The Hankel matrix S
M
0
,M

is generally full rank as it
is formed from either measured Volterra kernels or
Volterra kernels obtained from unnecessarily high
order difference equations. A lower-order approxima-
tion scheme that carries the dominant dynamics of the
original data and excludes noise modelling is desirable.
The robust singular value decomposition is proven to
be suitable for such situations (Kung 1978).
Following Isidori (1973), a lower-order bilinear state-

space model based on singular value factorization of the
Hankel matrix S

M
0
,M

is obtained as follows:

(1) Construct the generalized finite Hankel matrix
S
M
0
,M
.

(2) Form the submatrices S1
M
0
,M

and S2
M
0
,M

defined in
Section 2.

(3) Perform singular value decomposition of the
(2M

0

–1)� (2M–1) Hankel matrix S
M
0
,M
and order

the singular values of S
M
0
,M

in a descending manner:

SM0,M ¼ U�VT

¼ U1 U2

� � �1 0

0 �2

� �
VT

1

VT
2

" #
,

ð27Þ

where, �1 is an r� r matrix containing all the dominant
singular values. While �2 contains the remaining smaller
singular values. As a result of the above, S

M
0
,M

can be
approximated as:

Sr ¼ U1�1V
T
1 ¼ OrRr, ð28Þ

where

Or ¼ U1�
1=2
1 , Rr ¼ �1=2

1 VT
1 : ð29Þ

(4) Form the quadruple state space (Ar,Nr, br, cr) of
order r as follows:

Ar ¼ ��1=21 UT
1 S

1
M
0
,M
V1�

�1=2
1

Nr ¼ ��1=21 UT
1 S

2
M
0 ;MV1�

�1=2
1

br ¼ first column of ��1=21 VT
1 ð30Þ

cr ¼ first row of U1�
�1=2
1 :

The reduced-order model given in (30) exhibits a
balanced behaviour. A system is said to be balanced
if the reachability and observability gramians are equal
and diagonal. A balanced realization procedure for
linear systems has been developed by Moor (1981) and
Pernebo and Silverman (1982). The balanced realization
procedures were extended to bilinear systems by Hsu
et al. (1983) and Al-Baiyat et al. (1994). The reduced-
order system in (30) can be shown to be balanced by
using the quadruple (Ar,Nr, br, cr) given in (30) and the
definitions of the reachability and the observability gra-
mians as follows:

�R ¼ RrR
T
r

¼ �1=2
1 VT

1 V1ð�
1=2
1 Þ

T
ð31Þ

¼ �1

�O ¼ OT
r Or

¼ �1=2
1 UT

1 U1ð�
1=2
1 Þ

T
ð32Þ

¼ �1:

Hence

�R ¼ �O ¼ �1: ð33Þ

6. Example

The reduced-order scheme given above will be
thoroughly evaluated on a continuous steered tank reac-
tor (CSTR) system given by Bartee and Georgakis
(1992). Experimental data from the CSTR system were
fitted to a bilinear difference equation through nonlinear
regression to give the following model (Bartee and
Georgakis 1992):

yðkÞ ¼ 1:3187yðk� 1Þ� 0:2214yðk� 2Þ� 0:1474yðk� 3Þ

� 8:6337uðk� 1Þþ 2:9234uðk� 2Þþ 1:2493uðk� 3Þ

� 0:0858yðk� 1Þuðk� 1Þþ 0:0050yðk� 2Þuðk� 1Þ

þ 0:0602yðk� 2Þuðk� 2Þþ 0:0035yðk� 3Þuðk� 1Þ

� 0:0281yðk� 3Þuðk� 2Þþ 0:0107yðk� 3Þuðk� 3Þ:

ð34Þ
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The Volterra kernels are computed using the algo-
rithm developed in Section 4. Three Hankel matrices
of 3� 4, 5� 6 and 7� 8 blocks are formed as in
equation (13) from the obtained kernels. The rank of
the Hankel matrices of the different sizes is five, which
leads to bilinear realizations of order five (Isidori
1973). However, a lower-order model can be obtained
by using the method given above.
The approximate reduced-order scheme given above

will be evaluated for different data length, i.e. the
number of kernels used to form the Hankel matrix.
From the Hankel matrices of 3� 4 blocks, a second-

and third-order reduced model were computed.
The state-space matrices of a second-order model are
as follows:

Ar2 ¼
0:9325 0:1358

�0:1141 0:5248

" #
Nr2 ¼

�0:0726 0:0442

0:0455 0:2804

" #

br2 ¼
2:9740

0:4475

" #
cr2 ¼ �2:9739 0:4968

� �
: ð35Þ

Similarly, the state-space matrices of a third-order
model are:

Ar3 ¼

0:9325 0:1358 0:0112

�0:1141 0:5248 � 0:0099

0:0105 0:3005 � 0:1758

2

6664

3

7775

Nr3 ¼

�0:0726 0:0442 � 0:0717

0:0455 0:2804 � 0:5200

0:0348 0:1474 � 0:2729

2

6664

3

7775

br3 ¼

2:9740

0:4475

� 0:1469

2

6664

3

7775 cr3 ¼ �2:9739 0:4968 0:0819½ �:

ð36Þ

By using the Hankel matrix of 5� 6 blocks, a different
second- and as well as a third-order reduced model
were computed. The state-space matrices of a second-
order model are:

Ar2 ¼
0:9146 0:1059

�0:1010 0:5696

" #
Nr2 ¼

�0:0721 0:0560

0:0242 0:2094

" #

br2 ¼
3:0192

0:7277

" #
cr2 ¼ �3:0194 0:7047½ �: ð37Þ

Similarly, the state-space matrices of a third-order
model are:

Ar3 ¼

0:9146 0:1059 0:0132

�0:1010 0:5696 0:0941

0:0153 0:3671 � 0:1157

2

664

3

775

Nr3 ¼

�0:0721 0:0560 � 0:0761

0:0242 0:2094 � 0:3374

0:0310 0:1150 � 0:1883

2

664

3

775

br3 ¼

3:0192

0:7277

�0:2354

2

664

3

775

cr3 ¼ �3:0194 0:7047 0:1356½ �: ð38Þ

Finally, by taking the Hankel matrix of 7� 8 blocks,
a different second- and as well as a third-order reduced
model were computed. The state-space matrices of a
second-order model are:

Ar2¼
0:9060 �0:0927

0:0921 0:5877

� �
Nr2¼

�0:0728 �0:0604

�0:0150 0:1779

� �

br2¼
3:0528

�0:8872

� �
cr2¼ �3:0536 �0:8266½ �: ð39Þ

Similarly, the state-space matrices of a third-order
model are:

Ar3 ¼

0:9060 � 0:0927 0:0106

0:0921 0:5877 � 0:1095

0:0209 � 0:3601 � 0:0987

2

664

3

775

Nr3 ¼

�0:0728 � 0:0604 � 0:0777

�0:0150 0:1779 0:2904

0:0299 � 0:0949 � 0:1609

2

664

3

775

br3 ¼

3:0528

�0:8872

�0:3024

2

664

3

775

cr3 ¼ �3:0536 � 0:8266 0:1574½ �: ð40Þ

Figure 1 shows the step responses of the original system
given in (34), the second and third reduced-order models
obtained from the Hankel matrix of 3� 4 blocks. It is
clear that the reduced-order model gives comparable
approximation for the original system. Figure 2 shows
the step responses of the original system, the second
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and third reduced-order models obtained from the
Hankel matrix of 5� 6 blocks. Clearly, the third-order
model gives better approximation than the second-
order model. Figure 3 shows the step responses of the
original system, the second and third reduced-order
models obtained from the Hankel matrix of 7� 6
blocks. In this case, both the second- and third-order
models give an excellent approximation of the original
model. Clearly, as the Hankel matrix increases in size,
the reduced-order model will give better approximation
of the original system (figure 4).

7. Conclusions

In this paper, a simple expression for the Volterra
kernels has been derived for the class of discrete time

bilinear systems described by a input–output difference
equation. This important result permitted the formation
of a generalized Hankel matrix that led to an algorithm
for generating a reduced-order bilinear state-space
model. The algorithm is based on the singular value
decomposition of the Hankel matrix. Several Hankel
matrices were studied under different data length
cases and different orders of the state-space models
were found. Finally, a numerical example was employed
to illustrate the effectiveness of the proposed algorithm.
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Figure 1. Step response of the original, second and third

reduced systems from the Hankel matrix of size 3� 4 blocks.

Figure 2. Step response of the original, second and third

reduced systems from the Hankel matrix of size 5� 6 blocks.

Figure 3. Step response of the original, second and third

reduced systems from the Hankel matrix of size 7� 8 blocks.

Figure 4. Step response of the original, second reduced sys-

tems from the Hankel matrices of size 3� 4 and 7� 8 blocks.
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