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ABSTRACT 

This paper outlines the Optimization problem of real and 
reactive power, and presents the new algorithm for studying 
the load shedding and generation reallocation problem in  
emergencies where a portion of the transmission system is 
disabled and an ax.  power solution cannot be found for the 
overloaded system. 

l h e  paper describes a novel and efficient method and 
algorithm to obtain the optimal shift in  power dispatch 
related to contingency states or overload situations in power 
system operation and planning phases under various 
objectives such as economy, reliability and environmental 
conditions. 

The optimization procedures basically utilize linear 
programming with bounded variables and i t  incorporates the 
techniques of the Section Reduction Method and the l h i rd  
Simplex Method. 

l h e  validity and effectiveness of the algorithm is  
verified by means of two examples: a 10-bus system and the 
ICE€ ~O-BUS, six generators System. 

INTRODUCTION 

The main purpose of the economic dispatch of electric 
energy systems have so far been confined to determine 
generation schedule that minimizes the total generation and 
operation cost and does not violate any of the system 
operating constraints such as line overloading, bus voltage 
profiles and deviations. In general, power system possesses 
multiple objectives to be achieved such as economic 
operations, reliability, security and minimal impact on 
environment. which inherently have different characteristics, 
and hence conflicting relations hold among these objectives. 

A new technique which can be almost generally used in 
extremizing the quadratic objective function with a linear 
programming method has been developed. It is considered to 
be more effective than such a technique as the 
"Multi-Segment Curve Method" or the Linear Objective 
Function Method". In addition to the algorithm for 
calculating real power generation which minimizes the total 
fuel cost, the algorithm for optimizing bus voltage and 
reactive power i s  presented. 

As a measure to counter the line overload, the algorithm 
is  developed for settling the Economic Load Dispatch (ELD) 
condition and the overload elimination condition 
simultaneously. As a I-inear Programming technique, the 
Third simplex Method has been contrived for reducing 
execution time and memory size (1 -3)- 

l h i s  paper presenis a new method to determine the 
optimal shift in power dispatch related to contingency states 
or overload situations in the system. The approach 
incorporates the condition that the additional cost incurred in  
shifting generation should be minimized (4-7). 

The method used for solving the load flow problem is the 
Newton-Raphson method. The Sensitivity KRi between line 

flow of line II and power injection of bus i has also been 
calculated. 

In order to demonstrate the effectiveness of the 
proposed algorithm, two examples: IO bus system and the 
IEEE 30 bus, six generators system are considered. Objectives 
selected vary from economy, security to minimal 
environmental impact. Numerical results have clearly shown 
that the optimal solution by means of the proposed algorithm 
i s  successfully and favourably compared to the existing 
techniques and algorithms (8-1 1). 

PROBLEM FORMULATION 

The multi-objective power flow optimization problem 
can be formulated as in  the following steps: 

1. OPTIMUM SCHEDULING OF REAL GENERATION 

T he objective function of the optimum scheduling of the 
real generation i s  to: 

where 

n 

a = ?  a 
i= l  i '  

ai is the Basic Cost Coefficient for generator i. 
n 
genera tor. 

i s  the number of generators inclusive of the slack bus 
9s 

b =  1:; 1, bi is the Linear Cost Coefficient for 
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c -  

cl 

c2 0 
C. 

U C 

ci is the Quadratic Cost 

Coefficient for generator i 

1 aking the perturbation of the both sides of  Eqn. 1, we get 

3tA3=atb1-(P tAP )t(P tAP )l[c](P tAP ) (2) 9s 9s 9s 9s 9s 9s 
then 

AJ=blAP tP1 [cNP ,APT [c]P +APT [c]AP 
9s 9s 9s gs 9s gs 9s 

= (bTt2PT [c])AP +APT [c]AP (3) 9s 9s 9s 9s 

As the value of P approach to the optimal point, AP 
9s 9s 

becomes so small that we can neglect the term of (AP )2. 9s 
1 hen we have the new objective function 

(4) gs 
AJ  = boTAP 

where 

bIT = bT t 2P:s [c] 

= (bl b2 ... bk ... b 
, 1  * I 

n )  
9s 

with bk = bk t 2c P 
k 9k 

1 he control variables AP . must obey: 
91 

Pm -Po. < A P  . < P M - P o  
g1 gi - gi - gi gi 

(5) 

where 

P:i 

P: 

P: 

i s  the init ial value of real power generated at 

generating bus i 

is the upper l imi t  of real power generated at 

generating bus i 

is  the lower l imi t  of real power generated at  

generating bus i 

Since some of the APgi may be negative and linear 

programming can only operate on nonnegative variables, new 
variables should be introduced through i 

Xgi 4 AP . t P:i - P z  (6) 
91 

so that the conditions of Eqn. 5 reduce to: 

(-1) 

Then we can express the original variables AP with gi 
respect to the new variables X as follows: 

9i 

AP . X - Po. t Pm (8)  gi gi  gi gi 
Substituting of Eqn. 8 into Eqn. 4. we have 

=b'(Xgs -Po 9s + Pm) 9s AJ 

= b' X t b' ( -Po t Pm ) (9) 9s 9s 9s 
Since the constant terms of the objective function to be 

extremized are insignificant, we can use the following 
objective function 

" ,  

gs k=l k gk 
A J = d X  = C g S b  X 

which i s  a linear function with respect to the new variables 

'gi. 

CONSTRAINTS 

The Newton-Raphson method formulates a set of linear 
equations expressing the real and reactive power injection 
errors at buses as follows: 

ap ap 
where, H. N. 3. L are Jacobian matrices defined as s, 3~ 
, 2 and %respectively (4-7). 

In the real power optimization procedure, setting AV = 
0 firstly. l h e  relationships of AP, AQ with Ae  can be 
expressed by the following equations (3-5): 

AP = [ H l A Q  
AQ = [ J  ] A e  

(i) Real Power Balance Condition 

The real power balance condition is defined as the 
Equality Constraints. l h e  slack bus real power balance 
condition can be written similar to Eqn. (12(a)) as follows: 

APs = [ H ] A0 (13) 
From Eqn. (12(a)), we have 

P n  1 
where H i s  the inverse of the Jacobian matrix H (3-7). 
)xq, )-$, l-$ are matrices consisting of the column vectors of  

the matrix H pertaining to generation buses, control buses, 
and load buses, respectively. 

Since the bus power of the non-generator buses cannot 
be changed, i.e. APc = 0 and Apt= 0. Equation (14) can be 

written as follows: 
A@ = [H,l AP9 (1 5 )  

(16) 
Substituting Eqn. (15) into Lqn. (13) leads to: 

aPs = CHsl [H 1 AP 

APgi= X 91 . - Po. 91 t Pm 91 

9 9  
Using equation (8) 
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and substituting in Eqn. (16) in view of Eqn. (8). then 

xgs - P O  t P; = [ l is]  [Hgl (Xg - Pgo t P$ 
9s or exoressed in the  form 

(ii) Line Overload Prevention Condition 

l h e  line overload prevetion condition is defined a s  the 
Inequality Constraint (4.5). The overloading in a transmission 
line can lead t o  system collapse in an extreme case. The 
following condition must be satisfied for preventing the line 
overload; a s  a security constraint or security index: 

n 

1=1 

Z AP ( UQ 
Q ..? ke i  gi 

where 
ZQ 
UQ 

and KQi 

is the line flow through line Q 
is the upper limit of transmission power of line Q 
is the sensitivity between line flow of line Q and 

power injection of bus i (i.e. AZQ/APi) 

Substituting from Eqn. (8) for AP in Eqn. (18), we get: 
9i 

n 
m 

Q i= l  gi gi gi 
2 t ? KQi(X - P" t P . )  (UQ 

or 
n n 

l h e  problem size can be reduced by taking into 
consideration only the constraints of the lines whose loading 
is approaching their  maximum rating IJQ. I t  can be taken as 
90% of normal loading (6.7). 

( 5 )  Upper/Lower Bounds on Each Generator Output Power: 
Rewriting Eqn. (17) in a compact form leads to: 
O I X  t P  - P "  (20) p -  9 9 
1 he Simplex Method with Bounded variables handles 

these constraints on the control variables implicitly without 
increasing the problem size. 

(iv) Environmental Impact (91: 

Generation emission can be taken a s  an index for 
environment conservation. The following condition must be 
sa tisf ied: 

C-P -. 
2 G 

a t f 3 P  t y P  t E e x p  V 
G G  

where a, 0. y. 5 .  E are coefficient of generator 
emission characterist ic and V is the allowable upper limit. 

2. _OPTIMUM SCHEDULING OF REACTIVE GENERATION 

The gbiective function of the optimum scheduling of the 
reactive generation is obtained a s  follows: 

Setting A 0  = 0 in Eqn. ( I  I), the  changes in the active 
power and reactive power caused by the bus voltage change 
can be expressed a s  follows: 

AP = [Ngs] AV 

AQ = [t.] AV (21) 
where: 

[N ] is the (n x n ) matrix consisting of  the  row 

of the Jacobian matrix [NI pertaining to the 
generator buses. 

9s 9s b 

Substituting Eqn. (21) for A P  9s into Eqn. (4) leads t o  

A3 = blT [Ngs]AV 

0 " 
where: bnT 

1 he control variable AVi must satisfy the following 

b ' l  (NqJ = (b , b2, . b i d .  

conditions: 
(23) M V y ( V p  t A V i < V i  

Thus, by introducing the new nonnegative variables Xvi. Eqn. 

(23) is reduced to: 
0 < X v i (  v y  -vm (24) 

where: 
Xvi AVi t V p  - V m .  (25) 

and AVi = Xvi - V y  + V m  

Substituting Eqn. (25) into Eqn. (22) and eliminating 
the constant terms, the linear objective function , with 
respect to, the new variable is obtained as: 

AJ = b X v  

CONSTRAINTS 

(i) Conditions on Reactive Power 

Separating the Eqn. (21) into two parts, one pertaining t o  
the voltage-controlled buses and the other pertaining t o  the 
load buses, we get: 

AQgc 
(27) 

where [AQQ 1 = [::I -AV 

[Lgc]and[LQ] a r e  the matrices consisting of the 

rows of the matrix [L] pertaining t o  
the voltage-controlled buses and the 
load buses respectively. 

For the voltage-controlled buses, the reactive power 
must be inside the permissible range given by: 

Qg"c 5 Qic  + AQgc - < Q M  gc (28) 

For the  load buses, the reactive power cannot be changed: i.e. 

Substituting Eqn. (27) into Eqns. (28). (29) leads to 

AQQ = 0 (29) 

Qic  + [Lgcl AV 5 Q E  

QZc t EL 9c 1 AV5Q; 
['-a] AV = O  

or in the form of Eqn. (25) a s  follows: 
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(ii) Upper and Lower Bounds on Each Bus Voltaqe: 

Rewriting Eqn. ( 2 4 )  in a compact form such as: 

O < X v 5 V M - V m  (32)  
which can be implicitly treated without increasing the 
problem size. 

3. CONTINGENCY ANALYSIS 

When it is impossible to dispatch the load without 
overloading the lines, the solution of the linear programming 
problem in the real power optimization procedure appears to 
be infeasible. In such cases, the solution can be feasible by 
assuming the possibility of load shedding. In this case, the 
objective function i s  written as the sum of the following two 
terms: the first is the objective function in the real power 
optimization procedure, i.e. Eqn. (IO) and the second is a 
weighted sum of load shedding quantities given as: 

n n 
1 

3 = ? b' X t E (WF). X (33)  
k = l  k gk j= l  1 Qj  

where: 
XQj = APQj is the variable representing the load 

shedding quantity APQj of the load bus j. 

which is nonnegative and needs not be 
replaced, and 

i s  the weighting factor assigned to reflect 

the load priority of load bus j. which must 
be made greater than the largest values of  

9s' 
b' for k = 1. 2. ...... n 

(wF)j 

CONSTRAINTS 

(i) Real Power Balance Condition: 

Since the power change quantity of a bus equals to 
the sum of the power generation change and the load change. 
we can write 

AP =APc t A P L  ( 3 4 )  

APS = APcs t APLs (35) 
In analogy with Eqns. (16). (17). it i s  possible to 

rewrite: 
APcs + APLc = [HSI [HI (APc t APL) 

or in  view of Eqn. (8) and the definition of XQ f AP L, 

XCs - PEs t P& i XQs = [HS] [HI (Xc - PE + P; t X $; or 

(36)  

Etis] EH 1 (xC XQ) - xGS - xQS 

(37) 

(ii) Line Overload Prevention Condition 

In the same manner as in  the case of real power 
optimization, we get: 

n n 
b o m  b 

Z +  E K (X E K X < U ,o r  
Q i=l Q i  Gi -'Ci) j=l  Qj Qj - Q 

n n n 
b b b o m  

i = l  Qi Ci j=1 QJ QJ Q Q i = l  Qi Ci Ci  
E K  .X . t . E  K .X . < U  - Z  t E K (P - P  ) 

(iii) Bounds on Xci and XLi 

The bounds on XGi and Xei can be presented as: 

0 5 xci 5 Pz i -  Pgi 

0 5 xu 5 x; 
where 

X; i s  the upper l imi t  of load shedding quantity 

AP,-i at  bus i. 

SECTION REDUCTION METHOD 

At  the first iteration, the temporary section of each 
control variable is set to be the part of the original range 
within the distance of AD from the init ial point of the 
control variable, where D denotes the width of the original 
range between upper and lower limits of the control variable. 
The value A i s  determined according to the estimated 
maximum distance between the init ial points and the optimal 
points (0.1 < /  h 5 1.0). 

As the iteration i s  repeated, the temporary section of 
the next iteration is reduced to k times as wide as that of the 
previous iteration. 

In general, it is reasonable to choose k as 0.5. but may be 
somewhat adjusted in accordance with the circumstances. 
The constant k is called the Section Reduction Factor. 

The procedure for extremizing the problem of n 
generators i s  depicted in  Figure (1). 

THIRD SIMPLEX METHOD AND SOLUTION PROCEDURE 

It i s  possible to develop the modified simplex method by 
reconstructing an identity matrix from the tables at  every 
iteration by extracting the unit vectors and rearranging 
them. By using this developed method, the execution time 
and memory size are substantially reduced as a unit vector i s  
generated at  every iteration instead of the identity matrix. 

In general, the linear programming problem is written as 
follows. 

Minimize 
Subject to 

where: 
A =  
B =  
x =  
b 
N 
B. N 

J CZ 
[A] X 2 b with X >_ 0 

[B N] is the constraint matrix. 
(C. C) i s  the Cost Coefficient Vector, 
(X. X) is the variable vector, 
i s  the basic matrix, 
is the non-basic matrix, and 
are the underscripts pertaining to basic and 
non-basic variables respectively. 

At  the initialization step, the slack and surplus variables, 
and the artif icial variable are introduced as shown in  Table 
(1). 

A t  the main step, the leaving and entering variables are 
determined. and, after the pivoting operation is carried out, 
Table ( 2 )  is obtained. 

Comparing Tables (1) and (2) .  it is observed that the unit 
vector of the r- th column has been transferred to the k-th 
column. 1P we exchange the unit vector of the k-th column 
for the new r-th column vector, we obtain the same result by 

operating with only the right side part of the matrix [ 1 B- 1 
N I. 
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x1 

x2 

x3  . .  
. .  

. .  
xm 

Iteration (11 -- 

0 0 0  ... 0 0 

1 0 0 . . . . . .  0 
0 I 0 . . . . . .  0 

0 0 I . . . . . .  0 

. .  

0 0 0 . . . . . .  1 

L- 

1 (pG1) 

Method 

Iteration1 

- 

Memory size Operation 

Calculation Pivoting Auxiliary Total 

Generator 111 

Simplex 

Method 

Revised 

Simplex 

Method 

Third 

Simplex 

I 

Multiplication (m+l) (m+n+l) (m+i)'+mn+n ( m i l )  ( rntnt i )  

Addition m(m+n+l) m(m+nt I )  

Multiplication (m+I)' mn (m+i)'+mn 

(mt 1 )'+n+ I 

Addition m(m+i) mn m(mtnt1) 

Multiplication (m+l) (n+2) ( m t l )  (n+2) 

(m+l) (ntZ)+m+n 

Figure (1) Graphic depiction of the Section reduction Method. 

X I  

Table (1): Variables a t  t h e  F i r s t  I te ra t ion  

(zj-cj) 
0 0 .. ck-zk/Y* .. 0 /I-Y ri .(Z k -Ck)/Yrk 0 Cgb-(Zk-Ck)br/Yrk 

1 0 .. -Yik/Yrk .. 0 !..Yrj-(vr{Yrk)Yik 0 1 bl-(Ylk/Yrk)br 

... zj-c j . . .  zk-c k . . .  

... Y ... Y lk ... 

... YZj  ... YZk ... 

... YJj  ... Y J k  ... 

... Yrj ... Yrk ... 

... Ymj ... Ymk ... 

I; ...... I 
Y ./Yrk I 

. . . .  -Ymk/Vrk .. 

Iteration 111 

The number of operations per iteration and the required 
memory size of the Simplex Method, the Revised Simplex 
Method, and the Third Simplex Method are shown in Table (3). 
From the table it can be seen that i f m is significantly larger 
than n, the Third Simplex Method results in  a substantial 
saving in the executing time and memory size. 

The iterative technique for the economic load dispatch 
optimization procedure is  shown in  figure (2). 

I I I I I 

/Method /Addition 1 m(nt1) 1 tn(n.1) 1 
I I I I I I 

where 
and 

m is the number of constraints (number of rows of  the constraint matrix A) 
n is the number of original variables. 
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-ine 
lumber 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11  
12 
13 

Table (5): Bus voltage and Connected Load 

Bus 
Number 

1-2 
1-6 
1-9 
2-3 
2 -6 
3-7 
4-7 
4 -8 
5 -6 
5-10 
6-9 
8-10 
9-10 

Set Initial Conditions of 
P,, and VI 

Perform the Real Power Optimization Algorithm 
and Update Poi to PZ+AP$ 

1---- 
1 

S o h  the Power Flow of the System on the 
Update Values of  Pi 

Calculate b”, [NI. [ L ]  

I I Solve the Power Flow of the System on the 
Update Valuer of Vi 

- 
Bus 

No. 

- 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

.- 

voltage at 
(Per unit) Iteration 

2 Not specified 0.2 
2 Not specified 0.3 
2 Not specified 0.2 
2 Not specified 0.3 
2 Not specified 0.2 
3 I .o 0.3 
3 1 .o 0.15 
3 I .o 0.2 
3 1 .o 0.2 
1 1.05 0.2 

+ j0.097 
+ j0.145 
+ j0.097 
+ j0.145 
+ j0.097 
+ j0.145 
+ j0.0726 
+ j0.097 
+ j0.097 
+ j0.097 

I 

Figure (2): Iterative Procedure 

RESULTS ON EXAMPLE (1) SYSTEM STUDIES 

A IO-bus model system shown in Figure (3) was used to 
test the method of scheduling real  and reactive power and to  
study the convergence characteristics of the optimization 
process prsented in the paper. 

The impedance and line charging data is given in Table 
(4) and the bus voltage and load data a re  given in Table (5). 
The operating limits and cost data for each generator and 
real  power generations of each iteration a re  shown in Table 
(6). In consequence of continuing the iteration procedure until 
the  cost flucturation AC becomes smaller than 0.05% of 
cost, the number of load flow calculation is 3 times. 

Table (4): Line Impedance and Charging Susceptance 

Line 
Impedance 

0.02 + j0.08 
0.06 + j0.24 
0.04 + j0.16 
0.06 + j0.24 
0.06 + j0.24 
0.06 + j0.24 
0.04 + jO.16 
0.06 + j0.24 
0.04 + j0.16 
0.06 + j0.24 
0.01 + j0.04 
0.04 + j0.16 
0.08 + j0.32 

Line charging 
susceptance 

0.03 
0.02 
0.015 
0.02 
0.02 
0.02 
0.015 
0.02 
0.015 
0.02 
0.01 
0.015 
0.025 

0.9737 
0.9650 
0.9726 
0.9996 
1.0123 
0.9875 
1.0125 
0.9882 
1.0175 

Figure (3): 10 Bus Model System 
RESULTS ON EXAMPLE (2) SYSTEM STUDIES 

The proposed optimization algorithm is applied to the 
IEEE 30 Bus test system with 6 generators and 41 lines given 
in Fig. (4). The system data a re  given in Tables (7) and (8). as 
obtained for Reference (9). The results using new algorithm 
are shown in Tables (9) and (IO) for the optimal solution of 
the  subproblem as compared to Table (1 I)  of Reference (9). 
The numerical results on this power system have verified the 
validity of the algorithm with respect to the existing oms. 
The memory size and execution t ime using the Third Simplex 
Method has been reduced tremendously. 

Fig. (4): 30 Bus Test System 191 
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Bus 
No. 

Bus Rating of each senerator Convergence of Power generation 1 
NO. Fuel Iter m e 1  Iter 

I 
2 1  I I 

1 6 

2 ? 

3 8 

4 9 

5 10 

2 7 + 6 P  + P  1.5 0.05 0.6 30.960 0.05 27.303 0.4153 
61 g1 

2 
3 5 + 1 0 P  + P  1.5 0.05 0.45 39.702 0.05 35.503 0.05 

g2 82 

2 
29 + 5 P + 0.5 P 1.5 0.05 0.35 30.811 i.075 34.953 1.0421 

e3 s3 

2 
1.5 0.05 0.5 35.250 0.05 31.403 0.05 3 1 c 8 P  + p  

s b  84 

2 
28 + 6 P + 0.5 P 1.5 0.05 0.37 30.289 1.1445 35.522 0.762 

s5 g5 

CONCLUSIONS 

Total Fuel Cost I 

An optimization technique has been presented for the 
economic allocation of real  and reactive power applying the 
linear programming method and an algorithm has been 
developed for finding a post-emergency schedule with the 
minimum of load shedding. 

Satisfactory results are obtained by adapting the 
program to the IO-bus model system and the 30-bus model 
system and found that  i t  is very similar and even bet ter  to 
that  of other optimum dispatch methods. 

The technique of linear programming is shown to be a 
powerful and practical tool for obtaining an approximate 
solution of a linearized optimization problem. Above all, the  
Section Reduction Method and the Third Simplex Method may 
have applications elsewhere. 

But, the confirmation of i ts  usefulness must await 
further testing on actual power systems. Extensions and 
refinements on the present algorithm are expected to  include 
reliability indices. As  an example, the algorithm relies on the 
convergence of the power flow at each iteration and 
therefore may be interrupted by a single solution divergence. 
The efficiency can also be  improved by exploiting sparsity of 
the problem. 

Table (8): Line flow capacity 

167.012 164.682 

Type Active Power Reactive Power 

I I I I 

I I I 1 

Bus 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
- 

0.15 
0.50 

0.50 

0.50 

0.50 

0.30 

~~ ~ 

-0.106 
-0.024 

0.000 
0.000 

-0.035 
0.000 

-0.087 
-0.032 

0.000 
-0.175 
-0.022 
-0.095 
-0.032 
-0.090 
-0.035 
-0.082 
-0.062 
-0.1 12 
-0.058 

0.000 
-0.228 

0.000 
-0.076 
-0.024 
0.000 
0.000 

-0.300 
-0.942 
-0.217 

0.000 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

-0.0 19 
-0.009 

0.000 
0.000 

-0.023 
0.000 

-0.067 
-0.016 

0.000 
-0.112 
-0.007 
-0.034 
-0.009 
-0.058 
-0.018 
-0.025 
-0.0 16 
-0.075 
-0.020 

0.000 
-0. I09 

0.000 
-0.0 16 
-0.0 12 
0.000 
0.000 
- 
- 

0.000 

0.50 

0.20 

- 
Line No 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

P: 

0.20 
0.20 
0.20 
0.50 
0.50 
0.50 
0.15 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
lP.U.1 

Line NO. P: Line NO. psi 

Line capacity is 110% of standard value (Ps) 

Table (7): Specified bus data 

~~~ 

P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-Q 
P-v 
P-v 
P-v 
P-v 
P-v 

5 

~- 
JS Voltage 

- 

- 
- 

- 
- 
- 

- 

- 
- 

- 

1.071 
1.082 
1.010 
1.010 
1.045 
1 .Ob0 

M.S. Bazaraa. 3.3. Jarv. "Linear Programming and 
Network Flows", John Wiley & Sones, pp. 1-219. 1977. 

D. Leven, Y .  Wallach. V. Conrad, "Mathematical 
Programming Solution of Optimum Dispatch". Power 
Technology Computer Applications Conference (PICA), 
CH 1318-3, pp. 137-141, 1979. 

B. Scott, J.L. Marinho, "Linear Programming for Power 
System Network Security Applications", IEEE Trans. on 
Power Apparatus and Systems, Vol. PAS-98, No. 3, pp. 
837-848. May/June 1979. 
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k l  
IO. 

1 

2 

3 

4 

5 

6 

Total 

Bul 
w. 

30 

29 

26 

27 

26 

25 

CO! 

cm 
no. 

1 

2 

3 

4 

5 

6 

Emission Characteristic of generators 
2 eR: Total I ter  

Bus F = a + b P  C c P  + d e w  Ini t ia l  t m / h  1 
BO. C G  

-2 2 -4 2.851 PG 
30 10 (b.091 - 5 . 5 5 4  P + 6.490 P ) +  2910 exp 0.45 0.029'8 0 . 3 8  

c c 

-2  2  -4 3 .333 PC 
29 10 (2 .543 - 6.047 P + 5 . 6 3 8  P )+  5*10 em 0 . 5 0  0.01194 0 . 5 1  

G G 

-2 2 -6 8 . 0  PC 

c c 

-2 2 -3 2 . 0  PG 

G c 

28 10 ( 4 . 2 5 8  - 5.094 7 c 4.586 P )+ l*:O exp 0.60 0.02685 0 . 5 1  

21 10 (5.326 - 3.550 P t 3.38 P ) +  2'10 em 0 . P O  0,04892 0 . 4 2  

_____ 
-2 2 -6 8 . 0  ZG 

26 10 ( 4 . 2 5 8  - 5.094 P + 1 . 5 8 6  P I +  1*10 exp 0 . 6 0  0.02865 0 . 5 3  
c G 

-2 2 -' 6 . 6 3 '  

c G 
10 ( 6 . 1 3 1  - 5.555 P t 5 . 1 5 1  P )+  1'10 "p ' ' r . 3 0  0.04936 0.44 

2 5 1  

Total generation cost ($/h) 
Total emission (ton/h) 
Total flow deviation (PA.) 

Minimized objectives Generation Emission 
minimum cost 

minimum 

Line 
overload 
index 
minimun 

606.04 645.88 

0.0381 0.7778 

0.124 0.381 
0.310 0.515 
0.543 0.562 
1.016 0.399 
0.514 0.522 

enerator output 
(P.U.1 

640.62 
0.2350 
0.0 - 

1 
2 
3 
4 
5 

0.589 
0.300 
0.525 
1.055 
0.355 
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Simplex Method Applied to  AC Load-Flow Calculation". 
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t o  Fuel Scheduling and Contingency Analysis." IEEE 
Trans. Power App. System, Vol. PAS- 103. No. 7, 3uly 
1984. 
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