
The 6th Saudi Engineering Conference, KFUPM, Dhahran, December 2002 Vol. 4. 73

NEW DIGITAL CODING ALGORITHMS UNDER
MORPHOSYS

Hassan Diab1 and Issam Damaj1

1:Department of Electrical and Computer Eng’g, Faculty of Engineering and Architecture
American University of Beirut

P.O.Box 11-0236, Beirut, Lebanon
diab@aub.edu.lb; issamwd@ieee.org

ABSTRACT

At one extreme of the computing spectrum, we have general-purpose processors that are programmed
entirely through software. At the other extreme are application-specific ICs (ASICS) that are custom
designed for particular applications. General-purpose processors are designed to execute any
application. On the other hand, ASICS are custom hardware circuits. They provide the precise
function needed for a specific task. Combining the flexibility of general-purpose processors and the
high performance of ASICS would lead to the desired goal. Consequently, this led to the introduction
of reconfigurable computing (RC). The MorphoSys is one example of an RC system, which combines a
reconfigurable array of processor cells with a RISC processor core and a high bandwidth memory
interface unit. This paper introduces two new coding algorithms using reconfigurable computing (RC)
and specifically chooses one of the prototypes in this field, MorphoSys (M1) [Bagherzadeh, 1998].
A performance analysis study of the M1 RC is also presented to evaluate the execution efficiency of the
suggested algorithms on the M1 system. The mapped algorithms deal namely with checksum coding,
and linear sequential coding. Examples (64-input bytes vector on the 8x8 RC array M1) were run, to
validate our results, using the MorphoSys mULATE program, which simulates MorphoSys operations.

Keywords: Digital Coding, Checksum, Linear Sequential Circuits, Reconfigurable Computers,
MorphoSys, Reconfigurable Cells, Reconfigurable Array.

 الملخص

 وهناك. وحدات المعالجة متعددة الأنواع، هنالك وحدات المعالجة المتعددة الأهداف التي تبرمج كليَّةً بواسطة البرامج
لقد صممت وحدات المعالجة المتعددة .، وهي تعالج تطبيقات محددة) ASICs(ايضاً وحدات معالجة متخصصة

فإن وحدات المعالجة المتخصصة هي دوائر الكترونية لعمليات , خرعلى الصعيد الآ. الاهداف من أجل تنفيذ أي برنامج

تؤدي إلى معالجات ذات مقدرة متميزة، بالتالي هذا) المرونة، والاداء العالي (دمج الإيجابيات في كلا النوعين . محدده

). Reconfigurable(هو إحدى معالجات) M1(مورفوسيس). Reconfigurable(الدمج أدى الى اصدار معالجات

 الخوارزميات المطروحه هي طريقة.للتشفير الرقمي) خوارزميات (يقدم هذا البحث طرق جديدة
إختبارات عدديّه أجريت بإستخدام). Linear Sequential Circuits(وطريقة التشفير) Checksum(التشفير

الدراسة اجريت . يات المطروحة بالإضافة إلى دراسة تحليله اجريت للخوارزم.بايت-٦٤مصفوفات تتألف من

). mULATE(باستخدام برنامج المحاكات المخصص للمعالج موفوسيس

Vol. 4. 74 Hassan Diab and Issam Damaj

1. INTRODUCTION

Reconfigurable computing (RC) is becoming more popular and increasing research efforts are
being invested in it. It employs reconfigurable hardware and programmable processors. The
user designs the program in a way where the workload is divided between the general-purpose
processor and the reconfigurable device. The use of RC opens the way for an increased speed
over general-purpose processors and a wider functionality than application specific integrated
circuits (ASICs). It is a good solution for applications requiring a wide range of functionality
and speed at the same time.

Reconfigurable computers (RCs) offer the potential to greatly accelerate the execution of a
wide variety of applications. Its key feature is the ability to perform computations in hardware
to increase performance, while retaining much of the flexibility of a software solution.
Reconfigurable computing systems are being investigated in many areas like: computer
graphics, digital signal processing, digital image processing, communications security, DNA
matching, and molecular modelling. For the M1 RC-system, the targeted areas of application
are: computer graphics, digital signal processing, information coding, cryptography, and more
[Eliseu, 2000] [Bagherzadeh, 1998] [Damaj, 2001] [Abdennour, 2000] [Maestre, 1999]
[Bagherzadeh, 1999].

2. MORPHOSYS DESIGN

One of the emerging RC systems includes the MorphoSys designed and implemented at the
University of California, Irvine. It has the block diagram shown in Figure 1 [Bagherzadeh,
1998]. It is composed of: 1) an array of reconfigurable cells called the RC array, 2) its
configuration data memory called context memory, 3) a control processor (TinyRISC), 4) a
data buffer called the frame buffer, and 5) a DMA controller.

A program runs on MorphoSys in the following manner: General-purpose operations are
handled by the TinyRISC processor, while operations that have a certain degree of
parallelism, regularity, or intensive computations are mapped to the RC array. The TinyRISC
processor controls, through the DMA controller, the loading of the context words to context
memory. These context words define the function and connectivity of the cells in the RC
array. The processor also initiates the loading of application data, such as image frames, from
main memory to the frame buffer. This is also done through the DMA controller. Now that
both configuration and application data is ready, the TinyRISC processor instructs the RC
array to start execution. The RC array performs the needed operation on the application data
and writes it back to the frame buffer. The RC array loads new application data from the
frame buffer and possibly new configuration data from context memory. Since the frame
buffer is divided into two sets, new application data can be loaded into it without interrupting
the operation of the RC array. Configuration data is also loaded into context memory.

New Digital Coding Algorithms under Morphosys Vol. 4. 75

The MorphoSys emulator is written in C++. The graphical user interface is written using Gtk.
Gtk is available in most UNIX platforms. The program is distributed with its source code as a
zipped tar file. This emulator is called mULATE it’s a very efficient tool for testing and
analyzing algorithms [Damaj, 2001].

3. RECONFIGURABLE DEVICE

As stated earlier, the reconfigurable device in MorphoSys is the RC array divided into four
quadrants. The interconnection network is built on three hierarchical levels. The first is a
nearest neighbour layer that connects the RCs in a 2-D mesh. The second is an intra-quadrant
connection that connects a specific RC to any other RC in its row or column in the same
quadrant. The third is an inter-quadrant connection that carries data from any one cell (out of
four) in a row (or column) of a quadrant to other cells in an adjacent quadrant but in the same
row (or column). The context words present on context memory configure the function of the
RCs as well as the interconnection, thus specifying where their input is from and where their
output will be written [Eliseu, 2000].

4. CODING APPLICATIONS

With the presence of high speed data communications devices, the need for more processing
power is essential. With the emergence of extremely powerful reconfigurable systems, the use
of such systems would grant the ever increasing demand on high coding speed. The coding
techniques presented here are the checksum coding algorithm, and an example on mapping
linear sequential circuits onto the RC-array. Other coding algorithms like cyclic coding, and
turbo coding along with the addressed algorithms would give a complete view about the use
of the M1 system in digital coding.

4.1. Checksum Coding Technique

Checksum codes are generated by appending n-bit words, called the checksum words, to a
block of m-(n-bit) data words, formed as the sum of the m words using modulo 2 addition. On
one hand, encoding using the checksum coding technique means to use an n-bit arithmetic
adder to add the m data words, with any carry beyond the nth bit being discarded. The sum is
then appended to the data block as the n-bit checksum. On the other hand, decoding means to
use the same n-bit arithmetic adder to add the m data words and XOR the sum with the
appended checksum, if the result is zero, then there is no error. In this paper we introduce two
parallel algorithms to perform the encoding and the decoding and their mapping onto the M1
reconfigurable cells array.

Vol. 4. 76 Hassan Diab and Issam Damaj

Figure 1. MorphoSys Block Diagram.

Simply, adding in parallel two vectors of bytes performs the encoding part. Generally, a one-
dimensional vector has the form:].....[210 n

T MMMMM = , which includes n-elements.

Mapping an algorithm for checksum is done by first storing the encoded and the coding vector
both in the Frame Buffer set “0” and set “1”. Then we can exploit the properties of the
interconnection, where some contents of Frame Buffer set “0” are added to some contents of
Frame Buffer set “1” and the result would be in columns 0-7 of the RC-array. Figure 2 shows
the final output in the RC-array after running the algorithm of encoding a 64-element vector.
The desired function of the interconnection is: Out = U + V; the context word of this operation
is loaded through the context memory.

The decoder part contains the same encoding algorithm but with an addition of XORing the
result with the received checksum, if the result is all zeros then there are no errors in the
received bytes. This is done by XORing the two vectors of Bytes available in the Frame Buffer
the one resultant from the addition and the one stored for the checking. The code and explana-
tion for the decoding algorithm is shown in tables 1 and 2, for the M1 and some Intel MPUs.

Columns
Rows

C0 … C7

R0 U0+V0 . .

R1 U1+V1 . .

R2 U2+V2 . .

R3 U3+V3 . .

R4 U4+V4 . .

R5 U5+V5 . .

R6 U6+V6 . .

R7 U7+V7 . U63+V63

Figure 2. RC array contents after encoding.

New Digital Coding Algorithms under Morphosys Vol. 4. 77

Table 1. The TinyRISC code for the decoding algorithm.

0: ldui r1, 0x1; R1 10000hex. vector U is stored.

1: ldfb r1, 0, 0, 16 ; FB 16 x 32 bits at set 0, bank A, address 0.

2: add r0, r0, r0; No-operation.

. . . .

33: ldui r1, 0x2; R1 20000hex.
This is where vector V is stored.

34: ldfb r1, 1, 0, 16; FB 16 x 32 bits at set 0, bank B, address 0.

35: add r0, r0, r0; NOP

. . . .

66: ldui r3, 0x3; R3 30000hex.
This is where the context word is stored in main memory. To
perform the addition part of the routine.

67: ldctxt r3, 0, 0, 0, 1; Load one context word from main memory starting at the
address stored in register 3 into plane 0, block 0 and starting at
word 0.

68: add r0, r0, r0; NOP

. . . .

71: ldui r4, 0x0; R4 00000hex.

72: dbcdc r4, 0, 0, 0, 0, 0, 0; Double bank column broadcast. It sends data from both banks
address 0 in the frame buffer and broadcasts the context words
column-wise. It triggers the RC array to start execution of
column 0 by the context word of address 0 in the column
block of context memory operating on data in set 0. Bank A
starting at 0x0. Bank B starting at (0x0 + 0).

73: ldli r4, 0x4 R4 4hex

74: dbcdc r4, 0, 0, 1, 0, 0, 0x40; It sends data from both banks address 40hex in the frame
buffer. Bank A starting at 0x40. Bank B starting at (0x4 + 0x0
= 0x40).

75: ldli r4, 0x8 R4 8hex

76: dbcdc r4, 0, 0, 2, 0, 0, 0x80; It sends data from both banks.

77: ldli r4, 0xC R4 Chex

78: dbcdc r4, 0, 0, 3, 0, 0, 0xC0; It sends data from both banks address C0hex in the frame
buffer. Bank A starting at 0xC0. Bank B starting at (0xC +
0x0 = 0xC0).

79: ldli r4 0x10 R4 10
80: dbcdc r4, 0, 0, 4, 0, 0, 0x100; It sends data from both banks address 100hex in the frame

buffer. Bank A starting at 0x100. Bank B starting at (0x10 +
0x0 = 0x100).

81: ldli r4, 0x14 R4 14hex

82: dbcdc r4, 0, 0, 5, 0, 0, 0x140; It sends data from both banks address 140hex in the frame
buffer. Bank A starting at 0x140. Bank B starting at (0x14 +
0x0 = 0x140).

Vol. 4. 78 Hassan Diab and Issam Damaj

83: ldli r4, 0x18 R4 18hex

84: dbcdc r4, 0, 0, 6, 0, 0, 0x180; It sends data from both banks.

85: ldli r4, 0x1C R4 1Chex

86: dbcdc r4, 0, 0, 7, 0, 0, 0x1C0; It sends data from both banks.

87: wfbi 0, 0, 0, 1, 0x0; Write data back to the frame buffer from the output registers
of column 0 into set 0, address 0, FB A.

88: wfbi 1, 0, 0, 0, 0x40; of column 1 into set 0, address 64.

89: wfbi 2, 0, 0, 0, 0x80; of column 2 into set 0, address 128.

90: wfbi 3, 0, 0, 0, 0xC0; of column 3 into set 0, address 192.

91: wfbi 4, 0, 0, 0, 0x100; of column 4 into set 0, address 256.

92: wfbi 5, 0, 0, 0, 0x140; of column 5 into set 0, address 320.

93: wfbi 6, 0, 0, 0, 0x180; of column 6 into set 0, address 384.

94: wfbi 7, 0, 0, 0, 0x1C0; of column 7 into set 0, address 448.

95: ldui r1, 0x1; R1 10000hex. vector U is stored.

96: ldfb r1, 1, 0, 16 ; FB 16 x 32 bits at set 0, bank B, address 0. Where the
checksum bytes are stored.

97: add r0, r0, r0; No-operation.

. . . .

128: ldui r3, 0x3; R3 30000hex. This is where the context word is stored in
mem.

129: ldctxt r3, 0, 0, 0, 1; Load one context word from main memory starting at the
address stored in register 3 into plane 0, block 0 and starting at
word 0.

129: add r0, r0, r0; NOP

. . . .

132: ldui r4, 0x0; R4 00000hex.

133: dbcdc r4, 0, 0, 0, 0, 0, 0; Double bank column broadcast. The XOR operation.

134: ldli r4, 0x4 R4 4hex

135: dbcdc r4, 0, 0, 1, 0, 0, 0x40; Double bank column broadcast. The XOR operation.

136: ldli r4, 0x8 R4 8hex

137: dbcdc r4, 0, 0, 2, 0, 0, 0x80; Double bank column broadcast. The XOR operation.

138: ldli r4, 0xC R4 Chex

139: dbcdc r4, 0, 0, 3, 0, 0, 0xC0; Double bank column broadcast. The XOR operation.

140: ldli r4 0x10 R4 10
141: dbcdc r4, 0, 0, 4, 0, 0, 0x100; Double bank column broadcast. The XOR operation.

142: ldli r4, 0x14 R4 14hex

143: dbcdc r4, 0, 0, 5, 0, 0, 0x140; Double bank column broadcast. The XOR operation.

144: ldli r4, 0x18 R4 18hex

145: dbcdc r4, 0, 0, 6, 0, 0, 0x180; Double bank column broadcast. The XOR operation.

146: ldli r4, 0x1C R4 1Chex

147: dbcdc r4, 0, 0, 7, 0, 0, 0x1C0; Double bank column broadcast. The XOR operation.

New Digital Coding Algorithms under Morphosys Vol. 4. 79

4.2. Linear Sequential Circuits Coding Algorithms

In this section we’ll introduce the mapping of another application using reconfigurable
computing. The circuits considered here are finite state machines with a finite number of
inputs and outputs. The inputs, outputs and state transition occur at discrete intervals of time.
The elements used are adders (XOR) and the delays (D) to delay input words. A sequence of
0s and 1s can be expressed by a polynomial in which the 0s and 1s are coefficients of the
powers of a dummy variable. Hence the sequence 11001 can be written as

01234 10011 DDDDD ⊕⊕⊕⊕ . This representation is the basis of the Feed forward Binary
Circuits, which are very useful in coding techniques. An example of these circuits is the
circuit of the form:)1()(321 DDDDT ⊕⊕⊕= , as shown in Figure 3.

D
1

D
2

D
n

+ + +

X

Y

Figure 3. A General Representation.

This circuit is used to code any stream of input vector X and yields a set of outputs Y.
Therefore, the input vector X is a vector of 0s and 1s and the output is the coded output Y
vector, which is the result of multiplying the input polynomial (vector) X with the polynomial
represented by T(D). This could be generalized to take the form:

j
jk

N

j
k Dxy −

=
∑⊗=

0
, or, finally XDY j

N

j
)(

0
∑
=

⊗=

i.e. XDDDDY N)...(210 ⊕⊕⊕⊕=

where, N is the number of stages of the circuit, and X is of the form kk xxxX 10 ... −= and xk is

the first bit to enter the multiplier circuit. However, in this paper we will introduce the
mapping for the reconfigurable parallel computation of this algorithm. The proposed mapping
assumes column broadcast mode where all the cells in the same column perform the same
function. The RC cells in each column are configured to perform:

Column 0: Out(t+1) = A x 1

Column 1: Out(t+1) = A ⊕ B, where B accesses its left.

Vol. 4. 80 Hassan Diab and Issam Damaj

Column 2: Out(t+1) = A ⊕ B, where B accesses its left.

 :

 :

Column 7: Out(t+1) = A ⊕ B, where B accesses its left.

Where “A” represents the input, and “B” represents the interior stages taken each time from
the left output. Where,”⊕ ” the EX-OR operation supported in the MorphoSys ALU. Due to
the non-linearity in this application the first desired output appears starting from the third
cycle. For a 3-delay multiplying circuit, the contents of the cells in column 2 at the end of
cycle 3 are the first 3 elements in the output vector. This is also the case for the same RCs at
the end of cycles 6 and 9 where they are the second and third 3-element sets in the output
vector. Therefore, a write back to frame buffer of column 2 contents has to be made at the end
of those specific cycles. Then, the process is repeated.

5. PERFORMANCE ANALYSIS

This performance is based on the execution speed of the algorithms. The MorphoSys system is
considered to be operational at a frequency of 100 MHz.

5.1. Checksum Coding Technique

The algorithm in Table 1 takes 147 cycles in order to terminate. Thus the speed in Bytes-Per-
Cycle of the algorithm of Table 1 is equal to 0.435 Bytes/Cycles i.e. 2.3 cycles for each byte
to be decoded. Accordingly, the time for the algorithm to terminate is equal to 1.47 µsec.
Comparisons with the same algorithm mapped onto some Intel microprocessing systems are
shown in Table 2; the calculated speedup factor is considered to be the ratio of the M1 number
of cycles over the other suggested systems.

5.2. Linear Sequential Circuits Coding Algorithms

For the case of a 3-delay multiplying circuit, the first output set is available from the third
cycle, but after accounting the cycles needed for loading and storing data the calculations
differ. In general it would take 9 cycles to code an 8-word code with a 3-delay multiplying
circuit. The algorithm finishes coding 16 inputs (a total of 24 inputs of which the first 6 are
zeros padding) in 32 cycles. The output vector is available in a file; this also takes additional
cycles. Indeed, this algorithm takes 32 cycles to terminate, coding 16 bytes i.e. with a rate of
0.5 bytes/cycles, or 2 cycles per byte. With a total time equals to 0.32 µs. Findings are
presented in Table 3.

New Digital Coding Algorithms under Morphosys Vol. 4. 81

Table 2.Comparisons with other systems for the Checksum Coding/Decoding Algorithms.

Algorithm

Sy
st

em

N

of

C
yc

le
s

Sp
ee

du
p

Ti
m

e
in

M

ic
ro

 S
ec

.

B
its

 p
er

C

yc
le

M
eg

a
B

its

Pe
r S

ec
on

d

C
yc

le
s p

er

B
its

Encoding parallel
algorithm of 64-Bytes

M1 96 0.96 5.33 533.33 0.19

 Pentium 580 6 0.96 0.88 117.43 1.13

 80486 769 8 4.36 0.67 66.58 1.50

Decoding parallel
algorithm of 64-Bytes

M1 147 1.47 3.48 348.30 0.29

 Pentium 904 6.14 6.79 0.57 75.41 1.77

 80486 1156 7.86 11.56 0.44 44.29 2.26

Table 3.Findings for the Linear Sequential coding Algorithm.

Algorithm

N

of

C
yc

le
s

C
yc

le
s /

B

yt
e

B
yt

es
 /

C

yc
le

To
ta

l t
im

e
in

 M
ic

ro

Sp
ee

d
in

M

eg
a

bi
ts

Linear Sequential
Circuits Coding

Algorithm under M1
for a 16-Byte Vector

32 2 0.5 0.32 400

6. CONCLUSION

New mapping algorithms are introduced dealing with coding operations and its performance
analysis under MorphoSys is proposed. Results are compared with other processing systems.
On one hand, the checksum coding algorithm is presented with its mapping onto the M1.
Accordingly, a speed of 0.67 Bytes/Cycle for encoding was achieved, while a decoding speed
of 0.43 Bytes/Cycle was obtained. On the other hand, a linear sequential coding algorithm was
tested achieving a coding speed of 0.5 Bytes/Cycle. Future efforts could be invested in
mapping other algorithms like the cyclic coding algorithms and turbo coding algorithms. In
addition, comparisons could be made with results available on other parallel processors.

Vol. 4. 82 Hassan Diab and Issam Damaj

REFERENCES

1. Abdennour E., H. Diab, and F. Kurdahi, 2000, “FIR Filter Mapping and Performance Analysis on
MorphoSys,” Proceedings of the 7th IEEE International Conference on Electronics, Circuits and
Systems, Lebanon.

2. Bagherzadeh N., F. Kurdahi, H. Singh, G. Lu, M. Lee and E. Filho, 1998, “MorphoSys:
A Reconfigurable Architecture for Multimedia Applications,” Proceedings of XI Brazilian
Symposium on Integrated Circuit Design, Rio De Janeiro.

3. Damaj I., 2001, “Performance Analysis of Linear Algebraic Functions using Reconfigurable
Computing,” Masters of Engineering thesis, The American University of Beirut, Lebanon.

4. Damaj I., H. Diab, 2001, “Performance Analysis Of Extended Vector-Scalar Operations Using
Reconfigurable Computing,” Proceedings of the ACS International Conference of Computer
Systems and Applications, Beirut, Lebanon, p.270.

5. Eliseu M. C. Filho, 2000, “Design and Implementation of the MorphoSys Reconfigurable
Computing,” submitted to the Journal of VLSI and Signal Processing-Systems for Signal, Image
and Video.

6. Maestre R., F. Kurdahi, N. Bagherzadeh, H. Singh, R. Hermida, and N. Fernandez, 1999, “Kernel
Scheduling in Reconfigurable Computing,” Proceedings of Design and Test in Europe
(DATE’99), Munich, Germany.

7. N. Bagherzadeh, F. Kurdahi, H. Singh, G. Lu, M. Lee, and E. Filho, 1999, “MorphoSys:
A Parallel Reconfigurable System,” Proceedings of Euro-Par 99, Toulouse France.

	Table Of Contents:
	Search:
	Author Index:
	Top:

