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ABSTRACT 

In this article, orthogonal curvilinear meshes described by [Meliani, H, 1988] and [Meliani, H. et al, 
2000], are applied to the TLM method. To this end, the symmetrical super condensed node (SSCN) 
described by [Trenkic, V et al, 1995] is used. To validate our results, two types of cavities are studied. 
The resonant frequency of the dominant modes is calculated. The obtained results are compared to the 
analytical results and to the results given by cartesian meshes in [Trenkic, V et al, 1995] and 
[Akhtarzad, S et al, 1975].  
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 الملخص

   [Meliani, H, 1988]يتناول هذا البحث الشبكات ذات الخطوط المنحنية العمودية والتي تم وصفها من قبل  

قد تم . TLM في التقنية الرقمية  (SSCN) و استعمالها مع العقدة المكثفة المتماثلة ، [Meliani, H. et al, 2000]و

تم دراسة نوعين من التجويف للتأكد من صحة النتائج و. [Trenkic, V et al, 1995] من قبل (SSCN)وصف 

 و من ثم دراسة ،في هذه الدراسة تم إجراء العمليات الحسابية الخاصة بالتواتر الرنيني للنمط السائد. المحصل عليها

  [Trenkic, V et al, 1995]مقارنة النتائج المحصلة عليها بالنتائج التحليلية و النتائج الخاصة بالشبكة الديكارتية  

 .[Akhtarzad, S et al, 1975] و

 

1. INTRODUCTION 

Over the last few years, the TLM method has been used to solve a variety of problems 
[Christopoulos, C., 1995] such as: two-dimensional scattering problems in rectangular 
waveguides, Two-dimensional eigenvalue and hybrid field problems, three-dimensional 
eigenvalue and hybrid field problems, diffusion problems, vibration and acoustics, 
electromagnetic compatibility, microwave design, radar cross-section (RSC), antennas, and 

 



Vol. 4.  210 H. Meliani  and  Y.A. Jebbar 

 

electromagnetic heating. In  [Christopoulos, C., 1995] the theory and application of the TLM 
method as applied to these problems are well presented. The author gives a large variety of 
references related to the TLM method. 

Since its advent, the TLM method has always been used with a cartesian mesh to solve a 
variety of problems stated above [Christopoulos, C., 1995] and [Akhtarzad, S et al, 1975].  At 
first, uniform cartesian meshes were used and they were perfectly adapted to problems with 
regular boundaries. However for problems with irregular boundaries or singularities where the 
gradient of the field is high, the meshes need to be fine in these areas. For this type of 
problems regular meshes are not suitable because the number of the nodes to be used can be 
excessive which demand large storage capacity and execution time. So irregular cartesian 
meshes were used and made fine in the regions where the gradient of the field is high 
[Al-Mukhtar, D. A. et al, 1981], [Saguet, P. et al].  The inconvenience of the Cartesian 
meshes is that they do not describe the boundaries correctly. The development of variable or 
graded meshes [Al – Mukhtar, D. A. et al, 1981] has made possible modeling in a non-
cartesian mesh. Following this development, a new approach was proposed in [Meliani, H., 
1988], [Meliani, H., et al, 2000] which consists of the automatic generation of orthogonal 
curvilinear meshes in two and three dimensions. 

The advantages of using a mesh other than cartesian is that: 

- The curvilinear mesh fits the boundaries. This is important for the accuracy of modeling. 
A curved boundary would have to be described in a step-wise fashion if a rectangular grid 
is used. 

- The mesh is orthogonal and automatically generated. This latter feature would overcome 
the burden of data preparation to describe the topology of the mesh especially in three 
dimensions. 

- The mesh is crowded in an organized way around a point where there is a field singularity.  

- Another advantage of a curvilinear mesh is that a saving in computer storage may be 
achieved. 

However, orthogonal curvilinear meshes demand an effort of computation to generate them as 
is shown in [Meliani, H., 1988]. 

The similarities between curvilinear meshes and non-uniform cartesian meshes is that   the 
analysis of a node in both meshes is the same. The main difference is that lengths of the lines 
in curvilinear meshes are curved whereas they are straight in cartesian meshes. This difference 
will have an influence in the values of the parameters (capacitance and inductance) of the 
node since they are function of length lines as it is shown in the following section. 
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To improve TLM method, new types of nodes have been used in three dimensions such as 
hybrid symmetrical condensed node (HSCN) and the symmetrical super condensed node 
(SSCN). These nodes have been used in non-uniform Cartesian mesh, and they yield 
substantial good results [Trenkic, V et al, 1995], [Christopoulos, C., 1995].   

 
In this paper orthogonal curvilinear meshes are used in conjunction with the symmetrical 
super- condensed node in TLM to calculate resonant frequency of some practical 
electromagnetic field problems. The generated meshes are performed using Gauss surfaces as 
described in [Meliani, H, 1988] and [Meliani, H, et al, 2000].  To compare the effectiveness of 
orthogonal curvilinear meshes and non-uniform cartesian meshes, two examples studied in 
[Trenkic, V et al, 1995] and  [Akhtarzad, S et al, 1975] are treated here. The examples are two 
resonant cavities for which the resonant frequencies of the dominant modes are calculated.  
 

2. REPRESENTATION OF SSCN NODE 

The theory of the SSCN TLM node in three dimensions is well described in [Trenkic, V et al, 
1995]. For completeness, the results of this theory used in the work presented in this article 
are given in this section.  

Figure1 represents a node of an orthogonal curvilinear mesh in three dimensions 
[Meliani, H, 1988] and figure 2 represents its TLM SSCN node. In the figures 1 and 2 below, 
∆l1 = ∆x, ∆l2 = ∆y, ∆l3 = ∆z. 

The SSCN node is an amelioration of the hybrid node [Trenkic, V et al, 1995], 
[Christopoulos, C., 1995] in a sense that all the stubs are suppressed to diminish the scattering 
matrix, but the time step ∆t is increased. A SSCN node comprises 12 ports as shown in 
figure2. Each two adjacent lines have the same characteristic impedance. The use of this type 
of node in conjunction with the orthogonal curvilinear mesh yields more precise results with 
less computing time and storage as will be seen in subsequent sections. 

The computation and notation used with SSCN node with regard to figure2, is as follows 
[Trenkic, V et al, 1995]. This notation is adopted in the work presented in this article. 

Vinj: indicates the polarization potential j, in the propagation direction i. The subscript n 
indicates the position of Vinj with respect to the center of the node (n stands for negative).     

Vipj: indicates the polarization potential j, in the propagation direction i. The subscript p 
indicates the position of Vipj with respect to the center of the node (p stands for positive).     

Cij: indicates the capacitance per unit length for the   polarization wave j, in the propagation 
direction i.      
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Lij: indicates the inductance per unit length for the   polarization wave j, in the propagation 
direction i.      

Zij: indicates the characteristic impedance of the polarization line j, in the propagation 
direction i.      

V1=Vynx, V2=Vznx, V3=Vxny, V4=Vzny, V5=Vynz, V6=Vxnz, V7=Vypz, V8=Vzpy, V9=Vzpx, 

V10=Vxpz, V11=Vxpy, V12=Vypx. 

 
The total capacitance and the total inductance in a given direction are as follows: 

Cik ∆i +Cjk ∆j =ε ∆i∆j/∆k   .................................... (1) 

Lij ∆i +Lji ∆j =µ ∆i∆j/∆k   ..................................... (2) 

 i, j, k taking all the values  x, y, z and  i≠j≠k 

The time constant ∆t, which must be constant along all the lines, is  [Trenkic, V et al, 1995]: 

∆t=∆i √ (Cij Lij)  ..................................................... (3) 

and is taken as the smallest possible one. 

The above 3 equations are solved in [Trenkic, V et al, 1995] to find the characteristic 
impedance of each line which is: 

Zij = ∆j∆ l (√µ/ε )/[2cij ∆i∆k]  ........................................... (4) 

Where 

∆ l  = 2∆t/ (√µε) for a cubic node of dimension ∆ l . 

cij = Cij ∆j/(ε ∆k)   (5) 

=ijl Lij ∆k/(µ ∆j)   (6) 

The relations between the incident and reflected impulses are given by [Trenkic, V et al, 
1995]: 

Vr
inj = Vj + IkZij - Vi

ipj   (7) 

Vr
ipj = Vj - IkZij - Vi

inj   (8) 
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Where 

 Vj = cij(Vi
inj + Vi

ipj) +  ckj(Vi
knj + Vi

kpj) 

  Ik = ( ijl /Zij ) (Vi
ipj - Vi

inj + Vi
jni  -  Vi

jpi). 

  Vj and  Ik represent respectively the node voltage and current in the directions j and k. 

The excitation of this type of node obeys to the same rule of the other type of nodes [Trenkic, 
V et al, 1995], [Christopoulos, C., 1995].   

The excitation of the electric field Ej = -Vj/∆j in the j-direction is done by taking:   

Vinj = Vipj = Vj/4cij   (9) 

Vknj = Vkpj = Vj/4ckj                                              (10) 

The magnetic field Hk =Ik/∆k is excited in same manner, i.e.  

Vipj = -Vinj = Vjni = -Vjpi  = IkZij/4 ijl  =  IkZij/4cik    (11) 

Once all the parameters of a node are determined and the input and output nodes chosen, the   
conventional technique of TLM is used to solve a problem under consideration. 
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3. FORM OF THE OUTPUT 

The TLM output, in a given output node, consists of a stream of impulse functions for the 
particular field component under consideration [Johns, P.B. et al, 1971]. These impulses are 
of varying magnitude in the time domain and are separated by a time interval ∆t seconds. For 
analysis purposes it is usual to take the Fourier transform of this function to yield the response 
to an excitation varying sinusoidally with time in a chosen input node. Since the output is in 
the form of a discrete series of delta functions, the Fourier transform integral equation (12), 
may be replaced by a summation thus yielding the real and imaginary parts of the output 
spectrum given by equations (13). 
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Where Re is the real part of the spectrum and Im is the imaginary part. N is the total number 
of iterations used  IK is the output amplitude at time t = K∆t. 

The truncation of the output in the time domain (which is necessary for practical reasons) 
causes a spreading of the solution delta function into sin(x)/x type of curves [Johns, 
P.B.,1972]. For greater resolution in the frequency domain sufficient number of iterations 
must be used to separate the solution points clearly and reduce error caused by time truncation 
of the output. Examples of this output will be given in subsequent sections.   
 
 
4. APPLICATION OF THE METHOD TO TWO EXAMPLES 

The orthogonal curvilinear mesh is used in this section to study two examples already 
analyzed with cartesian meshes in  [Trenkic, V et al, 1995] and [Akhtarzad, S et al, 1975]. 
The results of the two techniques are then compared. The examples are: 

- A cavity with two layers of dielectric which is analyzed in  [Trenkic, V et al, 1995] using 
non-uniform cartesian meshes. 

- A cavity with one layer of dielectric in the middle which is analyzed in [Akhtarzad, S et al, 
1975] using uniform cartesian meshes and here using non-uniform meshes for comparison. 
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4.1. Cavity With Two Layers Of Dielectrics: Dominant Mode Te110 

The problem presented in this section is the cavity shown in figure3 studied in [Trenkic, V 
et al, 1995]. It contains two layers of dielectric (εr = 4). The resonant frequency of the 
dominant mode TE110 is evaluated. The dimensions of the cavity are as follows as given in 
[Trenkic, V et al, 1995]: 

Length =10a, width = a, dielectric width  = a/4, gap between the two dielectrics = a/2  

For this problem there is no propagation in the z-direction, therefore one computing surface 
only is used in the z-direction with two extreme surfaces used as boundaries. The excitation is 
done in the z-direction. The input node is taken in one layer of dielectric whereas the output 
node is taken in the other layer. 

Figure4 shows a sample of a surface generated in (x y) plane with 10 nodes in the x–direction 
and 8 nodes in the y-direction. One can notice the curvature of the lines and the variation of 
their spacing in the dielectric layers and this is due to the presence of the dielectric.  

Table 1 shows the results obtained for the resonant frequency of the dominant mode TE110 
for different types of meshes. One can notice that there is an appreciable improvement of the 
results obtained for the curvilinear meshes (Cv) with fewer nodes with regard to the Cartesian 
meshes. For instance, for a mesh of 60 nodes, the error of the result for the non-uniform 
cartesian mesh (CNU) is twice the error of the result of curvilinear mesh. The curvilinear 
mesh of 120 nodes gives an error, which is five times smaller than the error of the non-
uniform mesh of 480 nodes. These results prove that curvilinear meshes permit savings in 
capacity storage and execution time. It is worth noting that, in the orthogonal curvilinear 
meshes the number of nodes  (=10) is kept constant outside the dielectric and varied inside the 
dielectric to have a concentration of nodes in this region.  

An investigation has been made on the convergence to the theoretical value of the different 
numerical results. These are shown in figure5 that represents the variation of the frequency 
versus the number of nodes for the orthogonal curvilinear meshes and the non-uniform 
meshes. One can notice the rapid convergence to the theoretical result of the curvilinear mesh 
results with regard to the results of the Cartesian meshes. In this example the concentration of 
the nodes is made in the dielectric.  

Figure6 shows the output form in the frequency domain of the cavity for an orthogonal 
curvilinear mesh of 120 nodes. The output is calculated as explained in section 3 above. The 
pick corresponds to the resonant frequency of the dominant mode TE110. 

Concerning the execution time for the orthogonal curvilinear mesh and the non-uniform 
Cartesian mesh, it can be approximately   examined through the number of iterations used in 
each case. 
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Lets compare the cases where both methods give lowest error possible that is to say 
CNU(20x24) for the non uniform  Cartesian mesh and Cv(10x12) for the curvilinear 
orthogonal mesh (table1). For the CNU (20x24) the time step is ∆t1 = 1.39ps and for the 
Cv(10x12) the time step ∆t2= 1.087ps. If the total number of iterations required in the case of 
CNU(20x24) is N1,  for Cv(10x12) the total number of iterations would be N2=N1 ∆t1/ ∆t2 that 
is to say N2= 1.279N1. As can be seen, the curvilinear mesh allowed an improvement of the 
result by decreasing the error to 0.002%, but at the expense of number of iterations. However, 
since the number of arithmetic operations per node, say P, is the same in both meshes 
therefore the total number of operations in each case is P1 = 480xN1xP for the CNU(20x24) 
and P2 = 120x1.279N1xP  for the Cv(10x12). The calculation gives P2 = 153.6N1xP or 
P2 = 0.32P1. As can be seen, there is a substantial saving in the overall execution time when 
using the curvilinear orthogonal mesh.         
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table1: TLM results for different types of meshes 

Type of meshes Number 
of nodes Time step (∆t) TLM frequency 

(GHz) Error% 

*CU (40x4)  160 2.965ps 15.480 -6.72 

*CU (400x40) 16000 0.2965ps 16.584 -0.07 

CNU (10X6) 60 4.8141ps 16.485 -0.662 
CNU (10x8) 80 3.83ps 16.648 +0.32 
*CNU (10x12)  120 2.779ps 16.584 -0.07 
*CNU (20x24)  480 1.39ps 16.594 -0.01 
Cv (10x6) 60 4.27106ps 16.545 -0.3 
Cv (10x8) 80 2.1842ps 16.606 +0.066 
Cv (10x12) 120 1.087ps 16.5953 +0.002 
CU: Cartesian uniform mesh  
CNU: Cartesian non-uniform mesh  
Cv: Curvilinear mesh 
*Analytical result f=16.595 GHz.  
*: results given by [Trenkic, V et al, 1995] 

Figure -4   Generated mesh 10X8 in the    
    (x, y) plan         
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4.2. Cavity With One Layer Of Dielectric In The Middle:  

The problem presented in this section is the cavity shown in figure7 studied in [Akhtarzad, S 
et al, 1975]. It contains one layer of dielectric (εr = 16) in the middle. The resonance 
frequency of the dominant mode TE101 is evaluated. The dimensions of the cavity are as 
follows as given in [Akhtarzad, S et al, 1975]: 

Length a = 71.12mm, height b = 21.336mm, width c = 26.67mm, dielectric width 
t = 17.78mm, εr = 16. 

For this problem there is no propagation in the y-direction, therefore one surface only is used 
in the y-direction. The excitation is done in the y-direction. The input and output nodes are 
taken in the dielectric.  

Figure8 shows a sample of a generated mesh in the (x z) plane for this problem. Here again, 
one can notice the curvature of the lines and the variation of their spacing in the dielectric 
layer and this is due to the presence of the dielectric. Figure9 shows how nodes are distributed 
in the mesh.   

Table2 shows the results obtained for the resonant frequency of the dominant mode TE101 for 
different types of meshes. From this table, it is clear that, for this example also, the curvilinear 
mesh gives better results than the Cartesian mesh. For instance, for a cartesian non-uniform 
mesh of 300 nodes an error of 0.4% is obtained, while for the curvilinear mesh of 280 nodes 
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the error is reduced to 0.028% but the time step decreases slightly. However this reduction of 
the time step is negligible with regard to the appreciable improvement of the result. It is worth 
noting, that for a uniform cartesian mesh of 7000 nodes, an error of 0.26% is obtained and this 
show the usefulness of the curvilinear mesh.    

In this example, also, an investigation has been made on the convergence to the theoretical 
value of the different numerical results. These are shown in Figure10 that represents the 
variation of the frequency versus the number of nodes for the orthogonal curvilinear meshes 
and the non-uniform meshes. Again, in this case, one can notice the rapid convergence to the 
theoretical result of the curvilinear mesh results.   

Figure11 shows the output form in the frequency domain of the cavity using a curvilinear 
mesh of 180 nodes. The output is calculated as explained in section 3 above. 

Concerning the overall execution time for this case, the same approach can be used as for the 
precedent example. Here again, we consider the meshes, which give the best results. From 
table2, CNU(10+10+10)x10 mesh  gives an error of 0.4% with a time step of ∆t1 = 6.197ps 
whereas Cv(10+8+10)x10 gives an error of 0.028% with a time step of  ∆t2= 5.678ps. The 
number of iterations N2 of the curvilinear mesh Cv(10+8+10) is given by N2 = 1.09N1 where 
N1 is the number of iterations of the non-uniform Cartesian mesh CNU(10+10+10)x10. Here, 
one can notice a slight increase of the number of iterations in the case of the curvilinear mesh. 
The total number of operations for each case is P1 = 300xN1xP for the CNU mesh and 
P2 = 280xN2xP or  P2 = 305.2xN1xP for the Cv mesh. Hence P2 = 1.017P1. Here, we notice a 
slight increase of a number of operations in the case of the orthogonal mesh but the error is 
drastically decreased from 0.4% to 0.028%.  For the Cv(5+4+5)x10 mesh which gives an 
error slightly better than CNU(10+10+10)x10, the number of operations is P2 = 0.56P1. Here 
there is a significant saving in the overall execution time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure.8-Generated surface with surface 
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Table2. TLM results for different types of meshes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mesh type Number of 
nodes 

Frequency 
TLM (GHz) 

Time step 
(∆t) 

Error % 

CNU (5+5+5) x10  150 1.72 7.95345 -0.807 

CNU (4+10+4) x10  180 1.7173 8.31804 -0.963 

CNU. (7+5+7) x10  190 1.7234 7.21619 -0.611 

CNU (5+10+5) x10  200 1.7209 7.95345 -0.755 

CNU (10+10+10) x10  300 1.727 6.197 -0.4 

Cv. (5+4+5) x10  140 1.7285 7.46 -0.31 

Cv. (7+4+7) x10  180 1.731 6.87307 -0.173 

Cv (10+8+10) x10  280 1.7345 5.6779 +0.028 

*Cartesian uniform mesh  7000 1.7314 --- 0.26 

CU: Cartesian uniform mesh  
CNU: Cartesian non uniform mesh  
Cv: Curvilinear mesh 
*Analytical result f=1.734 GHz.  
*: values given in [Akhtarzad, S et al, 1975]. The author does not give the time step. 
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4. CONCLUSION  

In this article, it is shown that the use of orthogonal curvilinear meshes in TLM yields better 
results with fewer nodes than the conventional cartesian meshes. The reduction of number of 
nodes implies the reduction in the execution time and the storage capacity.  
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