
1

An Adaptive Algorithm for Sinusoidal Interference
Suppression in UWB-IR Systems

Mauro Biagi, Cristian Pellizoni, Nicola Cordeschi, Fabio Garzia, Enzo Baccarelli
{biagi, pelcris, cordeschi, enzobac }@infocom.uniroma1.it

fabio.garzia@uniroma1.it

Abstract— Ultra Wide Band (UWB) Radio transmission is an emerging
technology and up to now a lot of works are devoted to increase capacity
and QoS of UWB-based systems. At this regard, a critical point still
unresolved deals with the performance degradation induced in UWB
systems by narrow-band interference, possibly generated by concurrent
services. In this work we present a novel simple-to-implement algorithm
to estimate and suppress narrow band interferences impairing UWB
signals based on adaptive signal-processing techniques.

I. INTRODUCTION AND SYSTEM MODEL

In these last years Ultra Wide Band radio is becoming an appealing
technology for wireless networks. Starting from [1,2], a lot of
works were focused on the utilization of this technology to plan
communication systems. More in particular, several works deal with
the utilization of Pulse Position Modulation (PPM), and by fact, this
is the most adopted modulation technique in UWB. In this work
we present an adaptive simple-to-implement algorithm to mitigate
narrow band (sinusoidal) interference induced by concurrent services
sharing the same band employed by an UWB system. This algorithm
is able to estimate the number of interfering tones, their frequency
allocations and amplitudes in an adaptive fashion. In the considered
system, the transmitted signal s(t) is the Ultra Wide Band pulse.
After indicating the impulse response of the transmission channel by
h(t), the considered ”filtered signal” v(t) is given by the convolution
between s(t) and h(t). We assume that the signal v(t) is corrupted
by a narrow band interfering signal in(t). Some examples of in(t)
signals are those generated by concurrent telecommunication services
as for example, GPS (1575.42 MHz). The last disturbing signal n(t)
is the Additive White Gaussian Noise (AWGN). The ”monocycle”
s(t) signal is defined as in [1]. About the receiving correlation
filter, its response is defined as m(t)

.
= s(t) − s(t − δ) with equal

the PPM time shift [1]. An additional assumption we introduce is
perfect synchronization between transmitter and receiver and by fact,
for synchronization purposes, we may effectively use m(t) and its
output to detect the peak of the correlation function [1]. Therefore,
the narrow band interference (also called external interference) in(t)
may be, at first, modeled as a cosinusoidal tone defined as

in(t) = α cos(ωt + ϕ) (1)

with an unknown amplitude α , angular frequency ω and phase ϕ.
In the following, we relax this (simple) assumption by increasing the
number of cosinusoidal tones in order to model the interference as

iT (t) =
M∑

m=1

αm cos(ωmt + ϕm) (2)

Doing in so, (1) represents the particular case of (2). Therefore,
according to the receiving scheme of Fig.1, main task concerns how
to estimate the unknown parameters α, ωϕ presented in (1) in order
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to generate a reliable replica of the interfering tone and then subtract
it from the received signal. In fact, after sampling the received signal
r(t) and removing the estimated interfering tone, we have

r(k) − ĩn(k) = s(k) ∗ h(k) + n(k) + in(k) − ĩn(k) (3)

that can be also rewritten as

r(k) − ĩn(k) = s(k) ∗ h(k) + n(k) + εn(k) (4)

where we indicate as εn(k) the estimation error. Obviously, when
this error becomes negligible, link (4) approaches the (ideal) AWGN
channel when h(t) approaches ISI-free channel.
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Fig. 1. The proposed receiver and interference suppressor scheme.

II. FREQUENCY ESTIMATION STAGE

Before approaching the problem of estimation of the angular
frequency ω in (1), it may be suitable to point out some consid-
erations. Firstly, after modeling the narrow band interfering signal
as a sinusoidal tone, receiver perfectly knows its spectral shape.
Secondly, since the spectral properties of the received signal are
known, from the outset it results that a frequency domain processing
is an appealing approach for estimating ω in (1). Thus, we can try
to estimate the frequency position of the interference tone via an
FFT-based algorithm. For this purpose, after sampling the received
signal r(t) to obtain r(k), we can apply FFT to the obtained sequence.
Afterwards, the estimation algorithm tries to detect quick variations
of the slope of the received signal spectrum induced by the presence
of sinusoidal tones. To evaluate the change of the slope we can
resort to the derivative operator so to arrive at the processed signal.
Passing now to compare this frequency estimation method with
the multi-parametric Non-Linear Least Square algorithm (NLS in
the following), we recall that general goal of NLS algorithm is to
minimize the parametric function

f(ω, α, ϕ) =

N∑
i=1

∣∣∣∣∣r (t) −
M∑

m=1

αm · ej(ωm·t+ϕm)

∣∣∣∣∣
2

(5)
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where ωm is the angular frequency of the m-th interfering tone and
αm and ϕm are the corresponding amplitude and phase. The sum
from 1 to N is referred to the N samples representing the sampled
monocycle. In the simple case when only one cosinusoidal component
is present, eq.(5) simplifies in

f(ω, α, ϕ) =
N∑

i=1

∣∣∣r (t) − α · ej(ω·t+ϕ)
∣∣∣
2

(6)

Thus, the solution of (7) allow us to evaluate the estimated frequency
as

ω̂
.
= arg max

ω∈Iω

P̂R (ω) (7)

where we indicate as P̂R (ω) the periodogram of the received signal,
given by

P̂R (ω) =
1

N

∣∣∣r (t) ej·ω·t
∣∣∣
2

(8)

and Iω in (7) is the frequency sub-band we search for slope changes
of the received signal. So, in the proposed algorithm the desired
solution can be found by simply observing the change of slope of
the received spectrum.

III. PHASE ESTIMATION STAGE

We pass now to consider the phase estimation stage. The received
sampled signal r(k) can be expressed as

r(k) = s(k) ∗ h(k) + n(k) + in(k) (9)

and we can rewrite the interfering tone (1) in the following equivalent
form:

in(k) = a sin (ωk) + b cos (ωk) (10)

By exploiting (10) we can resort to a vector form to collect the
interference samples. More in particular, they can be lumped in the
following vector

in
.
= [in (k1) in (k2) ...in (kN )]T = Ax (11)

where A is defined as

A .
=

⎡
⎢⎢⎣

sin (ωk1) cos (ωk1)
sin (ωk2) cos (ωk2)

... ...
sin (ωkN ) cos (ωkN )

⎤
⎥⎥⎦ (12)

with x gathering the above coefficients a and b in (10) as in

x .
= [a b]T (13)

When the achieved frequency estimate is sufficiently reliable so that
we may assume ω̂ � ω , we can minimize the squared difference
between the received sequence r(k) and the sinusoidal interfering
component defined in (11). This is equivalent to minimize the
following quadratic form:

D(x)
.
= ‖r − Ax‖2 =

(r − Ax)T (r − Ax) = rT r − 2rT Ax + xT AT Ax (14)

whose minimum may be directly evaluated via derivative of D(x). In
fact, after deriving (14), we arrive at the ML (Maximum Likelihood)
equation

∂D (x)/∂x = −2rT A + 2xT AT A = 0 (15)

that, in turns, leads to the desired ML solution

x̂ =
(

AT A
)−1

AT r (16)

for the unknown parameters a, b in (10). From a computational point
of view, it is interesting to note that the symmetric matrix to be

inverted in (16) is (2× 2) so that the computational cost in any case
is limited. Thus, the amplitude of the interfering tone in (1) can be
directly estimated as

α̂ =

√
â2 + b̂2 (17)

while the phase may at first be evaluated as

ϕ̂ = − arctan
(
â
/

b̂
)

(18)

and then the π ambiguity may be resolved by retaining the sign of
â in (17).

IV. FREQUENCY AND PHASE ESTIMATION STAGE FOR MULTIPLE

INTERFERING TONES

When we consider the effect of M sinusoidal tones interfering the
UWB signal, the expression (4) becomes

r(k) − ĩT (k) = s(k) ∗ h(k) + n(k) + εT (k) (19)

where εT (k) represents the resulting estimation error. Thus, in this
case we can rewrite (10) as

iT (k) =

M∑
m=1

am sin (ωmk) + bm cos (ωmk) (20)

Furthermore, to apply (14) we have to estimate accurately the
frequency positions of the M tones, where also number M is a priori
unknown. To solve this problem, we can resort to a frequency window
where we apply the derivative to the received signal spectrum in order
to count the number of tones by detecting the zero crossings of the
spectral slope. Thus, after windowing the spectrum slope, we simply
count the number of changes of sign encountered over the window
scan and then we record them into a vector ω. This procedure can
be summarized the pseudocode detailed in Table I. The pseudocode
supports the adaptive feature of the proposed algorithm. In fact, we

counter=0;
set window length;
number of windows = number of samples / window length;
for n=1 to number of windows
{
if spectral slope presents quick variations then
counter=counter+1;
ωcounter = ω position;
}
M=counter;

TABLE I
A PSEUDO-CODE FOR THE EVALUATION OF NUMBER OF TONES AND

FREQUENCY POSITIONS.

are able to take into account M-interfering signals without any a
priori knowledge of knowing M a priori. Afterwards, the adaptive
frequency estimator block output in Fig.1 is the vector ω̂ collecting
the M estimated values for the frequency allocations of the interfering
tones. After estimating these frequency allocations, we can apply the
ML equation in (14). The general form of the resolving relationship
(16) does not change but the matrix and vector dimensions in (16)
increase respect to the simple case of only one interfering tone. In
fact, now we have

A =

⎡
⎢⎣

sin (ω1k1) cos (ω1k1)
sin (ω1k2) cos (ω1k2)

... ...
sin (ω1kN ) cos (ω1kN )

... sin (ωMk1) cos (ωMk1)

... sin (ωMk2) cos (ωMk1)

... ... ...

... sin (ωMkN ) cos (ωMk1)

⎤
⎥⎦

(21)
with

x .
=

[
a1 b1 ..... aM bM

]T
(22)
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in place of (12) and (13), respectively. The computational cost is of
the order of O(2M2 + N).

V. COMPARISONS WITH CONVENTIONAL SPECTRAL ESTIMATION

APPROACHES

To test actual effectiveness of the proposed interference-
suppression algorithm, in this Section we compare its performance
with those of conventional spectral estimation methods such as
MUSIC (MUlti SIgnal Classification) and Stochastic Approximation
ones [3,4,6].

A. Application of the MUSIC method to UWB signals

The MUSIC method allows to estimate the frequency positions of
interfering tones1 by detecting peaks of the following function [6]:

ψ∗(ω)ĜĜ
T
ψ(ω) (23)

where Ĝ is the matrix collecting the eigenvalues of the (possibly
colored ) ”disturb” affecting the received sequence in (4) and ψ(ω)

.
=[

1 e−jω ... e−j(n−1)ω
]

is defined as according to [6]. The dimension

of squared matrix Ĝ is set in agreement with the degrees of freedom
desired for the MUSIC estimator (see Chap.IV of [3] for additional
details about implementation of MUSIC algorithm). As it is known,
by increasing the dimension of we are able to refine the desired
estimates. However, since we have to detect the roots of (23) closest
to the unit circle, due to the coloration of the disturbing term εn(k)
in (4) by increasing the degrees of freedom we find a lot of roots very
close to the unit circle so that we may incur to ambiguity phenomena
in choosing the right root (see Fig.2). By fact, we have experienced
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Fig. 2. Diagram of the roots for SIR=-29dB for three interfering tones at
900MHz, 1575.42MHz and 1800MHz, with 9degrees of freedom.

that a number of degrees of freedom for Ĝ over three times the
number of interfering tones does not allow to increase MUSIC
performance in the considered UWB scenario. On the other hand,
by reducing dimension of Ĝ we decrease the corresponding degrees
of freedom. When degrees of freedom equate two, MUSIC method
collapses to Pisarenko one [4]. This last is less accurate for frequency
estimation but does not present the ambiguity phenomena of MUSIC.
The computational cost is of the order of O(N2 + N log2 N).

1MUSIC algorithm needs to know the number of M tones and this
estimation can be performed by resorting to the so called Akaike Information
Criterion (AIC) [9].

B. Application of Stochastic approximation approach to UWB signals

As it is known, the Stochastic Approximation approach is based on
the recursive computation for the joined Maximum Likelihood esti-
mation of frequency position, amplitude and phase of each interfering
tone [9]. This estimation can be found via the following iteration in
the k-index [5],

x̂(k) = x̂(k − 1) +
1

k
[J0 (x̂(k − 1))]−1 ·

· [∇x log (p0 (r(k)|x))]| x= x̂(k−1) (24)

where x̂ .
=

[
α̂T ω̂T ϕ̂T

]
is the vector of the parameters to be

estimated, J0 (x̂(k − 1)) is the (3M × 3M ) Fisher’s Information
matrix per received sample evaluated at x̂(k − 1) [5] and p0 (r(k)|x)
is the probability density function of the k-th observation conditioned
on the parameters. The computational cost is of the order of O(N3).
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Fig. 3. Filtered signal after suppression (case 1).
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Fig. 4. Filtered signal after suppression (case 2).

VI. COMPARISONS AND CONCLUSIVE REMARKS

The comparisons are performed over the channel employed in
[5] with pulse duration of T = 0.5ns, PPM shift δ = 0.5ns.
In Fig.3 the effect of estimation error is shown by considering an
impaired estimation error in frequency detection. If this error become
negligible the filtered signal becomes more similar to the transmit one
(see Fig.5) An examination of Fig.5 shows that proposed algorithm
is able to gain 3 dB over MUSIC-Pisarenko approaches and 6dB
over Stochastic Approximation one with lower computational cost.
Furthermore, performance loss of our algorithm with respect to the
ideal AWGN-like is limited up to 1dB. Furthermore, Fig.5 also shows
that both MUSIC-Pisarenko and Stochastic Approximation method
fail to achieve reliable performance in the considered application
scenarios and we have experienced that this drawback is mainly due
to the colored and non-stationary features of the UWB signal s(k)
presented in (4).
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Fig. 5. Performance comparisons between the estimation methods for the
same operating conditions of Fig.2.
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