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ABSTRACT

In this paper, a new biometric identification approach based
on the human iris is proposed. The main idea of the tech-
nique is to represent the features of the iris with the extracted
contour of the inner iris. The extracted boundary includes
a wealth of information about the person to allow accurate
identification. The technique is fundamentally different from
previous techniques that assume the circulatory nature of the
inner iris. The iris extracted contours are normalized, the
Fourier descriptors are computed, a feature vector is extracted
and fed to a statistical classifier. Preliminary results showed
a classification success of around 96%. The technique is ro-
bust to additive noise, cropping, scale, rotation, translation,
and is computationally efficient.

1. INTRODUCTION

One of the main threats that IT systems and security envi-
ronments are exposed to is that of unwanted intruders. This
is normally solved by user identification schemes based on
passwords, secret codes, or identification cards. Schemes
based only on passwords or secret codes can always be cracked
by intercepting the presentation of such passwords, or even
by counterfeiting. On the other hand, an intruder can attack
systems based on identification cards by stealing, copying
or simulating these. However, even schemes based on both
cards and passwords, such as smart cards, have been found
vulnerable to ”expert” attacks.

During the last few years, we have witnessed a substan-
tial growth in a new breed of algorithms for person identifica-
tion using biometrics. Biometric technologies are automated
methods for recognizing a person based on a physiological
or behavioral characteristic. Examples of human traits phys-
ical characteristics used in biometrics include: voice, finger-
prints, hand shape, retinal scan, handwritten signatures, etc,
[1]. Unfortunately, most of these methods are highly inva-
sive: typically, the person is required to make physical con-
tact with a sensing device (e.g., finger or hand contact) or oth-
erwise take some special action (e.g. recite a specific phone-
mic sequence). One possible alternative to these methods is
automated face recognition. As with all pattern recognition
problems, the key issue is the relation between inter-class and
intra-class variability: objects can be reliably classified only
if the variability among different instances of a given class
is less than the variability between classes. Therefore, in the

case of face recognition, difficulties arise from the fact that
the face is a ”deformable” object displaying a variety of ex-
pressions, as well as being an active 3D object whose image
varies with viewing angle, pose, illumination, and age.

Automated iris recognition is yet another alternative for
non-invasive verification and identification of people. Ver-
ification happens when the person identifies himself/herself
and the machines either confirms of rejects the identity, while
in identification, the person does not have to identify him-
self/herselft and it is up to the machine to either identify the
person (if he is in the database) or reject him/her. Interest-
ingly, the spatial patterns that are apparent in the human iris
are highly distinctive to the individual [2]. Like the face,
the iris is an overt body that is appropriate for remote (i.e.,
noninvasive) assessment. Unlike the human face, however,
the variability in appearance of any one iris might be well
enough constrained to make it possible to design an auto-
mated recognition system based on currently available ma-
chine vision technology. Some properties of human iris that
proved its suitability for use in identification include:

1. The impossibility of surgically modifying it without
high risk of damaging the user’s vision.

2. Its physiological response to light, which provides the
detection of a dead or plastic iris, avoiding this kind of
counterfeit.

3. As a planar object its image is relatively insensitive to
angle of illumination, and changes in viewing angle
cause only affine transformations; even the non-affine
pattern distortion caused by pupillary dilation is read-
ily reversible.

4. Finally, the ease of localizing eyes in faces, and the
distinctive annular shape of the iris, facilitate reliable
and precise isolation of this feature and the creation of
a size-invariant representation.

Several researchers have shown that while the general
structure of the iris is genetically determined, the particu-
lars of its minutiae are critically dependent on conditions in
the embryonic mesoderm from which it develops. Therefore,
there are not ever two irises alike, not even for identical twins
[2].

The objective of the paper is to present a new approach
to iris recognition using contours of the inner iris and a sta-
tistical classifier.



2. PROPOSED TECHNIQUE

In this work, the proposed technique, used for extracting fea-
tures of the iris, is translation, rotation, and scale invariant.
The feature extraction and classification stages are discussed
below while the setup of the database and related preliminary
work are omitted because of lack of space.

Iris Localization and Feature Extraction

1. The process of feature extraction starts by locating the
outer and inner boundaries of the iris.

2. The second step finds the contour of the inner bound-
ary i.e., the iris-pupil boundary.

3. Finally, the contour is represented using the ”Radius
Vector Method” and is named ”iris signature”.

Classification

1. To identify the contour extracted from the previous
step, a statistical classifier is used. In particular, the
contour are normalized, then we use Fourier Descrip-
tors as features extracted from the contours. As a clas-
sifier, we use the minimum distance statistical classi-
fier. The advantages of such classifier is its low com-
putational load and efficiency as will be explained lat-
ter.

In the next sections, the steps mentioned above are discussed
in more details.

3. LOCALIZING THE IRIS

3.1. Edge Detection

The first step locates the iris outer boundary, i.e. border
between the iris and the sclera. This is achieved through
edge detection on the gray scale iris image. In our work,
we investigated the performance of several edge detection
techniques, in particular:(1) The Sobel, Prewitt, and Roberts
methods which find the edges using certain approximations
to the derivative, (2) The Laplacian of Gaussian method that
finds edges by looking for zero crossings after filtering the
image with a Laplacian of Gaussian filter, (3) The Zero-cross
method that finds edges by looking for zero crossings af-
ter filtering the image with a filter specified by the opera-
tor, (4) The Canny method that finds edges by looking for
local maxima of the gradient. The gradient is calculated us-
ing the derivative of a Gaussian filter. The method uses two
thresholds, to detect strong and weak edges, and includes the
weak edges in the output only if these are connected to strong
edges.

After numerous experiments, we decided to use the Canny
technique which we found more robust than all of the others
across a number of iris images.This method is therefore less
likely to produce false edges.

3.2. Finding the Contour

The second step is to find the inner boundary, i.e. i.e the fron-
tier between the iris and the pupil. For this, the centroid of
the detected pupil is first found and taken as reference point
(xc, yc). Knowing that the edges of the boundary are rep-
resented by binary ones, the top and bottom extreme points
(i.e. (xc, ymin), and (xc, ymax)) of the inner boundary are
detected from this reference point by searching for the first
one. Once these extreme points are detected, a similar search
for the first one is made for all the points on the left (x < xc)
as well as on the right (x > xc) of the reference point. Fi-
nally, all the boundary points are stored in one dimension
vector.

4. FEATURE EXTRACTION

One of the most crucial stages for characterizing the iris is
the representation of the contour by a function. This function
can be any of the following:

1. The cross-section function (for symmetric figures)

2. The radius-vector function (for a star-shaped figures)

3. The supports function (mainly for convex figures)

Since the inner boundary of iris is not necessary symmetric
and convex, so the radius vector was our preferred choice for
finding the contour. This vector is explained below.

4.1. Radius-Vector Functions

The contour of a figure is described by the radius-vector func-
tion. So a reference point must be chosen inside the figure.
The figure is then translated such that this point lies at the
origin. The resulting figure must be a star-shaped with re-
spect to the origin. This means that for every contour point,
the whole line segment from the center to the point must be
inside the figure. Note that if the star-shaped set is not satis-
fied because of small irregularities on the contour, the figure
may be transformed to a star-shaped one through smoothing.
The radius-vector function rX(ϕ) depends on the angle ϕ

made by the line emanating from o with the x-axis. The
function rX(ϕ) is equal to the length of the line segment
from o to the contour point x in which the ϕ-ray intersects
the boundary. This function characterizes the contour X pre-
cisely meaning that X can be uniquely reconstructed if we
are given rX(ϕ).

The map X → rX transforms figures into elements of
a function space. If such figures can produce continuous
radius-vector functions, then the Banach space C[0, 2π] is
suitable. It is easy to calculate ϕ and rX(ϕi) for every point
xi in the contour X . So in general ϕi is not equidistant.
The resulting data can be modified by interpolation to obtain
equidistant interpolation nodes. Errors associated with this
interpolation may be neglected if the raster is fine enough.

In our scheme, the contours of irises obtained by the ra-
dius vector method are made same size by upsampling and



downsampling processes and thus the technique is made scale
invariant. The 1-D data so obtained is called ”iris signature”
and with all signatures of length 360.

Previous research has shown that contours are more ro-
bust to additive noise than other available functions men-
tioned above. Additionally, to standardize our analysis, the
followed is implemented:

1. All iris signatures are rotated to start at the highest
value of the radius. (rotation invariance)

2. This maximum value is normalized to 1. (scale invari-
ance)

3. All iris signatures are shifted to the center of gravity of
the iris contour (after finding the contour). (translation
invariance)

5. IRIS PATTERN RECOGNITION

The iris signatures obtained are then used for classification.
The objective here is to compare the iris-signature of an un-
known iris, with one of the known iris-signatures stored in a
certain database. The process consists of two phases: Train-
ing and Classification.

5.1. Fourier Descriptors (FD)

The problem that we need to solve now is that of: (i) repre-
senting each of the iris signatures from the database with a
certain feature vector, (ii) then comparing a given unknown
iris signature to the ones in the database.

Here, we propose to define the feature vector as the vec-
tor of Fourier Descriptors of the iris signature. Such fea-
ture vectors are then used as input to a statistical classifier.
There are a number of versions for the Fourier Descriptors
discussed in the literature, many of which depend on the
problem of interest. In this work the following definition is
used [3]:

R(k) = log(|

N∑

i=1

r(i)e−j2π
ki

N |) (1)

where N is the length of the iris signature r(i), and k =
1, ..,M whereM is the length of the Fourier Descriptors vec-
tor. We adopted the above definition as modulus is a shift
invariant expression. Because the coefficients may vary sub-
stantially, we used the log to reduce the range.

5.2. Feature Selection

The FD vector can be used in its row format as feature vector
and hence can be used in conjunction with the statistical clas-
sifier. However, as we decided on a size of the FD, M, of a
large size (M=512), we needed to develop a process whereby
we are able to reduce the size of the feature vector. To make
the proposed system simple and fast, we investigated the dif-
ferent techniques to reduce the size of the feature vector.

There are essentially three different ways for selecting d
features from a set of M features:

5.2.1. First d Coefficients

This is the most direct technique for selecting features. It
is based on the assumption that for most signals, the first
few coefficients contain most energy contained in the signal.
In particular, such coefficients represent the low frequency
behavior of the signal being analyzed. However, such tech-
nique is expected to perform very poorly with iris contours
as most irises have similar rounded shape (low frequency be-
havior), but the differences are more in the high frequency
details.

5.2.2. Largest d Coefficients

This approach relies on the concept of compression using
wavelets. The coefficients are selected based on a certain
threshold. Such approach is known as shrinkage technique
when wavelets coefficients are used. Rather than taking the
magnitudes of the largest coefficients, one can only use the
indices of such coefficients as feature vector.

5.2.3. Criterion-Based Search

Feature selection can be formulated as an optimization prob-
lem that consists of, given a set of M features, select a sub-
set of size d that maximizes a certain cost function. In this
work, we will use the performance of the classifier as crite-
rion. There are numerous feature selection methods avail-
able in the literature. A well known algorithm is the Branch
and Bound (BB) which is an optimal method for monotonic
feature sets. However, the method exhibits a high compu-
tational cost. Another well established technique is the se-
quential floating search method (SFSM) [4]. The algorithm
starts with a null feature set and, at each step, the best feature
that satisfies a certain criterion is included with the current
feature set. The SFSM can either proceed in increasing or
decreasing order until the desired size d is reached.

In this work, we carried extensive experiments to exam-
ine the performance of the abovementioned feature selection
techniques. Obviously, the computational cost of the SFSM
is highest among all the techniques. However, as its perfor-
mance was much higher than that of the other techniques, we
decided to use the SFSM technique as a benchmark for the
classification procedure discussed next. Using the database
of iris signatures we collected, we carried extensive training
to find the optimal FD coefficient indices from the signatures.
We selected a size of d = 40 features as we found that per-
formance stabilizes after this level.

5.3. Statistical Classifier

A statistical classifier using the feature vector consisting of
the most important SFSM FD coefficients with d = 40 was
selected. We implemented the ”minimum distance to iris
i” strategy where a prototype FD vector is first formulated



for each of the irises using 10 images for each of the irises
[5]. Besides the low computational load and the simplicity
of such classifier, the classifier was found to achieve good
classification accuracy as discussed below.

6. INITIAL EXPERIMENTAL RESULTS

In our experiments, we collected 500 different irises (25 peo-
ple, 2 eyes, 10 images for each eye) , using a high quality HP
digital camera, from 50 individuals (left and right eye are
considered separate). 7 from these 10 were used for training
and the remaining 3 were used for testing.

The average classification accuracy achieved was 96.66%.
40% of these cases exhibited a 100% accuracy. When noise
was added to the images used for testing at an SNR of 10 db,
the average accuracy dropped to 90.06%, then to 86% at 2
db SNR. We noticed that for some irises that were heavily
distorted, such as part of the iris being covered, the classi-
fier was giving unsatisfactory results. Fortunately, there were
only few cases that fell under this category.

In summary,we have shown, that a simple representation
of the iris followed by a statistical classifier can achieve ex-
cellent recognition rates. The scheme presented here has the
advantage if being computationally efficient and is robust to
observation noise.

7. CONCLUSION

The visual appearance of an individual and in particular his/her
iris is highly distinctive, therefore, it has promise as a basis
for robust biometric assessment. We have shown that opti-
mal feature selection together with Fourier descriptors and
a simple statistical classifier operating on the contour irises
can results in reliable iris identification systems. The pro-
posed system is simple, has a low a computation complexity,
and is robust to additive noise.
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Fig. 1. Image of a sample iris
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Fig. 2. Edges of the sample Iris
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Fig. 3. A Sample of Iris Signature
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