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ABSTRACT

The union of residual vector quantization (RVQ) and trellis-
coded vector quantization (TCVQ) was considered by var-
ious authors where the emphasis was on the sequential de-
sign. In this paper, we consider a new jointly optimized
combination of RVQ and TCVQ with advantages in al-
l categories. Necessary conditions for optimality of the
jointly optimized trellis-coded residual vector quantization
(TCRVQ) are derived. Simulation results for jointly op-
timized TCRVQ are presented for memoryless Gaussian,
Laplacian and uniform sources. The rate-distortion perfor-
mance is shown to be better than RVQ and sequentially
designed TCRVQ.

1. INTRODUCTION

Vector quantization (VQ) has been studied extensively for
data compression. However, direct use of VQ results in a
heavy memory and complexity burden that is unattractive.
These computation and memory demands required by VQ
depend on the VQ output rate R, and the vector dimension
n. Structurally unconstrained vector quantizers have expo-
nentially dependent costs proportional to 2nR.

Relief can be obtained by imposing carefully selected
structural constraints. A simple and eÆcient type of struc-
turally constrained VQ is Residual Vector Quantization
(RVQ) or multistage VQ [1], which consists of a cascade
of vector quantization (VQ) stages. The �rst stage input
vector x1 is quantized to generate the approximation x̂1.
The di�erence vector is then computed to form the residual

x2 = x1 � x̂1, which serves as the input to the next stage,
and so on. An RVQ with P stages and Np vectors per stage

can uniquely represent
QP

p=1
Np vectors, which can amoun-

t to orders of magnitude less memory than a conventional
VQ. Similar saving in computation may also be realized by
exploiting the RVQ structure. However, the eÆcient struc-
ture impacts the quality of performance as one would expect
[2], [3], the severity of which is directly related to the loss
in degrees of freedom.

A jointly optimized �xed-rate RVQ design approach was
presented in [4], in which the RVQ stages are optimized
jointly. In that design, an attempt was made to mini-
mize the overall quantization error of the RVQ in lieu of
merely optimizing the individual stages in isolation. In [5],

the theory of �xed-rate RVQ was extended to the case of
variable-rate RVQ. The resulting RVQ design, known as
entropy-constrained RVQ (EC-RVQ), was able to provide
performance superior to that of unstructured, exhaustive
search, entropy-constrained VQ for a given speci�cation of
memory and complexity. These performance gains come
from the fact that implementation eÆciencies of RVQ can
be used to push the practical peak rates of the entropy con-
strained encoder to higher values [5].

It was shown in [6] that trellis-coded quantization (TC-
Q) has the ability to achieve better cell shapes by using
scalar quantization along a trellis structure. In fact, ac-
cording to [7], the performance is better than the lattices
known to date up to 24 dimensions. The success of TCQ
in achieving better cell shapes prompted researchers to con-
sider exploring the combination of TCQ and residual vector
quantization.

This combination was considered in [8] and [9], where
the authors proposed residual trellis-coded vector quanti-
zation (RTCVQ) with a trellis in each residual stage. In
these papers, encoding is performed sequentially, stage by
stage, without regard to the overall system output. The de-
sign method adopted by the authors optimizes each residual
stage in isolation, and consequently does not design an opti-
mal trellis-based RVQ. The sub-optimality of the sequential
design becomes more apparent when used in a large residu-
al stage setup. We will refer to this scheme as sequentially
designed trellis-coded residual vector quantization.

Trellis-coded residual vector quantizers were also pre-
sented and analyzed in [10], [11], where experimental results
on natural sources were presented. This approach, although
sequential in its design, is di�erent in that a single trellis
structure is used that extends along all the residual stages,
providing stage symbols for each input vector. Since the
input vectors are coded independently rather than using
the trellis, this structure does not exploit any interaction
among neighboring vectors.

In this paper, we develop the theory of a jointly opti-
mized trellis-coded residual vector quantization (TCRVQ)
that employs direct sum codebook and joint optimization
over all residual stages. The �rst part of the paper (Section
2) introduces residual vector quantization, sequentially op-
timized trellis-coded residual vector quantization and joint-
ly optimized trellis-coded residual vector quantization. The
next part of the paper gives a derivation of necessary con-



dition for the optimal jointly optimized trellis-coded resid-
ual vector quantization. Section 3 reports comparisons and
simulation results for Laplacian, Gaussian, and uniform
sources.

2. SOME PRELIMINARIES

2.1. Residual vector quantizers

Residual vector quantization is associated with its direc-
t sum codebook, which can be constructed by enumer-
ating and summing over the tree paths embodied in the
stage structure. The quantizer is speci�ed by a triple
(Ae; Qe;Pe), consisting of a direct sum codebook, direct
sum mapping, and direct sum partition, respectively. The
elements of the direct sum codebook Ae are the elements
of the set of all possible sums of stage code vectors i.e.,
Ae = A1 + A2 + � � � + AP , one code vector summed
from each residual stage. The code vectors comprising di-
rect sum codebook, ye 2 Ae are indexed by the P tuples
jP = (j1; j2; : : : ; jP ), and can be written as

y
e(jP ) =

PX
p=1

y
p(jp); (1)

where yp(jp) represents the jpth code vector of the pth
stage codebook. The direct sum partition Pe is the collec-
tion of all direct sum cells Se(jP ). The union of direct sum
cells covers the n-dimensional space and has the property
that Sj \ Sk = ; for j 6= k.

The direct sum mapping Qe : Rn 7�! Ae, replaces each
vector input x1 with a direct sum codebook vector ye(jP ).
The average distortion of the residual vector quantizer is

D(x1; x̂1) =

Z
d[x1; Qe(x1)]dFX1 ; (2)

where x̂1 is the quantized representation of the input vector
x1 and FX1 is the source distribution function.

A necessary condition for minimum distortion is derived
in [4], [12]. This condition implies that each stage code
vector is obtained as a conditional mean of residual random
vectors where residuals are formed from encoding decisions
of both prior and subsequent stages. For a P -stage residual
vector quantizer, the �th stage residual ��; also called the
grafted residual, is de�ned as

�
� = x

1 �

PX
p=1;p6=�

y
p(jp): (3)

The necessary condition described above forms the basis for
the design of jointly optimized trellis-coded residual vector
quantization. The jointly optimized RVQ is an improve-
ment over the sequentially optimized RVQ proposed earli-
er. It derives its stage code vectors from the centroids of
residuals obtained through encoding decisions of only prior
stages, as de�ned below

x
� = x

1 �

��1X
p=1

y
p(jp): (4)

Based on the necessary condition, jointly optimized
RVQ can be designed iteratively where each iteration con-
sists of �rst optimizing the encoder while holding the de-
coder �xed, and then optimizing the decoder while holding
the encoder �xed. Since each step of this procedure can
only reduce or leave unchanged the average distortion of
the encoder/decoder pair, the design process converges to
a local minimum.

3. NECESSARY CONDITION FOR A

TRELLIS-CODED DIRECT SUM CODEBOOK

A necessary condition for minimum distortion of a trellis-
coded direct sum codebook can be described in the following
way. P te is held �xed by keeping the path maps in the trellis
structure �xed. Once the path map (i.e the trellis search)
is held �xed, the stage sub-codebooks are optimized jointly.
We will describe the conditions for the scalar case and the
mean-square error �delity criterion. These conditions can
be extended to the vector case in a straightforward manner.

Let X be a real random variable with probability den-
sity function fX(�). We wish to �nd a locally optimal set of
expanded codebooks fAtpg by �nding yK;p(jK;p) that gives
a locally minimum value of

Dmse =

Z 1

�1

[x�Q
te(x)]2fx(x)dx; (5)

based on a trellis search.
The trellis-coded direct sum code vectors available de-

pend on which sub-codebook is labeled along that branch.
Thus, each trellis state will provide a particular subset of
codebooks on its outgoing branches, constituting a residual
quantizer. In other words, we can say that after partitioning
two RVQs are constructed. Depending on which trellis state
we are in, a particular RVQ will result. The trellis-coded
direct sum sub-codebooks constituting each RVQ should be
optimized jointly. Alternatively, the above equation can be
written more precisely as

Dmse =
X
j1;P

Z
Ste(j1;P )

[x� y
te(j1;P )]2fX(x)dx

+
X
j2;P

Z
Ste(j2;P )

[x� y
te(j2;P )]2fX(x)dx: (6)

In addition to assuming a �xed P te, assume that all expand-
ed stage codebooks except for At� with � 2 f1; : : : ; Pg are
held �xed. To minimize Dmse with respect to the gK;�th
code vector in At�, set the partial derivative of both terms
in equation ( 6) with respect to yK;�(g(K;�)) equal to zero.
We will get two equations, one for each RVQ. For brevity,
we will use a general setup with variable K to represent
both RVQ with K = 1 for the �rst RVQ and K = 2 for the
second. Thus, we have

X
jK;P

Z
Ste(jK;P

)

[x�yte(jK;P )][
@yte(jK;P )

@yK;�(g(K;�))
]fX(x)dx = 0:

(7)



This partial derivative in brackets is

@yte(jK;P )

@yK;�(g(K;�))
=

�
1; if jK;P 2 HK;�(g(K;�)),
0; otherwise,

(8)

where HK;�(g(K;�)) is the set of all jK;P

such that the (K; �)th element of jK;P =

(j(K;1); j(K;2); : : : ; j(K;�); : : : ; j(K;P )) is equal to g(K;�).

Solving for yK;�(g(K;�)) gives the desired result i.e.

yK;�(g(K;�)) =:

X
jK;P

2HK;�(g(K;�))

Z
Ste

(jK;P )(x�

PX
p=1;p6=�

y
K;p(j(K;p)))fx(x)dx

X
jK;P

2HK;�(g(K;�))

Z
Ste(jK;P

)

fX(x)dx

:

(9)
This equation dictates that the two direct sum quantizers
available at the outgoing branches of the trellis have to be
jointly optimized for all residual stages. For this purpose,
grafted residuals introduced in [4] are used. Once the quan-
tizers along each state of the trellis are optimized, the next
optimality condition deals with searching the trellis. Here
we use an optimal search like the Viterbi algorithm [13].
These two conditions will provide a locally optimal trellis-
coded direct sum quantizer. Some preliminary results are
described in next paragraph.

Experimental results derived from simulated quantizers
are presented. The �delity criterion used is the mean square
error normalized by the source variance. Plots are present-
ed that show rate vs signal-to-noise ratio. Signal-to-noise
ratio is measured in dB and de�ned as

SNR(dB) = 10 log10

NX
i=1

(xi)
2

PN

i=1
(xi � x̂i)2

(10)

The simulation results for this section are generated us-
ing training sets of 1,000,000 two-dimensional vectors. This
training set size seems to be reasonable as we found almost
no di�erence in performance results run inside and outside
the training set. A 16-state trellis is used with a residual
structure searched by employing M=2 multi-path search-
ing.

Table 1: Performance(SNR in dB) of various vector quan-
tizers for the two-dimensional Laplacian source at 0.5, 1.0,
1.5, 2.0 bits/sample

Rate RVQ Seq. TCRVQ TCRVQ R(D)

0.5 1.60 2.47 2.47 N/A
1.0 3.59 4.21 4.99 6.62
1.5 5.91 6.18 7.42 N/A
2.0 7.49 8.12 9.94 12.66

Table 1 shows the performance for memoryless Lapla-
cian sources. TCRVQ performs better than RVQ and se-
quential TCRVQ at all rates. Here each residual stage is
contributing 0.5 bit/sample. We see that at two stages, the
performance of TCRVQ is 0.7 dB better than sequential
TCRVQ. At four stages, the di�erence is 1.8 dB. The dif-
ference in performance of TCRVQ and RVQ at four stages
is 2.4 dB.

Table 2 shows a memoryless Gaussian vector source.

Table 2: Performance(SNR in dB) of various vector quan-
tizers for the two-dimensional Gaussian source at 0.5, 1.0,
1.5, 2.0 bits/sample

Rate RVQ Seq. TCRVQ TCRVQ R(D)

0.5 1.67 2.63 2.63 3.01
1.0 4.40 4.95 5.10 6.02
1.5 6.92 7.38 7.83 9.00
2.0 9.43 9.72 10.49 12.04

Here we also observe the improved performance of TCRVQ
as compared to sequential TCRVQ and RVQ. The per-
formance gap between TCRVQ and sequential TCRVQ is
about 0.15 dB at two stages and is 0.8 dB for four stages.
This performance gap for Gaussian sources is much less that
of Laplacian sources. Similarly the performance of TCRVQ
is about 1 dB better than RVQ at four stages. The di�er-
ence for Gaussian and Laplacian sources may be attributed
to the di�erence of density shape advantage associated with
two sources. Two-dimensional Gaussian sources provide
density shape advantage of 1.14 dB while the advantage
for a two-dimensional Laplacian source is 2.27 dB, which is
almost twice as high as that for the Gaussian source.

Table 3: Performance (SNR in dB) of various vector quan-
tizers for the two-dimensional Uniform source at 0.5, 1.0,
1.5, 2.0 bits/sample

Rate RVQ Seq. TCRVQ TCRVQ R(D)

0.5 2.04 2.89 2.89 N/A
1.0 6.03 5.48 6.29 6.79
1.5 8.10 7.92 9.56 N/A
2.0 12.04 10.23 12.41 13.21

Table 3 shows the performance for uniform vector
sources. This source is used for experiments because it does
not provide any density shape advantage. Uniform sources
only provide cell shape advantage. Table shows a very small
gap of about 0.5 dB between the rate-distortion point and
TCRVQ at 0.5 bits per sample. This reects the ability of
the TCRVQ coder to capture a larger part of the cell shape
advantage from the trellis structure. The performance of
TCRVQ is again better than RVQ and sequential TCRVQ
and much closer to the R(D) points. Sequential TCRVQ
simply does not perform well above 1.5 bits per sample and
its performance is lower than even RVQ.
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