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ABSTRACT  
This paper proposes for the first time a combined method based on boundary-elements and discrete-charge simulation 
for evaluating the electric potential and field in cylindrical reactors with helical discharge wire. This is a step forward 
for investigating the onset voltage of microdischarges and how they develop in these reactors. In the combined method, 
fictitious discrete point charges simulate the surface charge on the helical wire while surface-charged boundary 
elements represent the charge on the inner and outer surfaces of the glass tube. The effect of the wire diameter, the pitch 
of the helical wire as well as the thickness and relative-permittivity of the glass tube on the calculated field values are 
investigated. 
 

1. INTRODUCTION  
There are many sources that generate pollutants like SOx, 
NOx, CO2, NH3, CFC as well as fine dust particles. These 
include coal-burning plants, factories, internal combusion 
engines, animal farms and the like. SOx, NOx, air 
pollutants contribute to the acid rain. CO2 pollutant 
contributes to the greenhouse effect which leads to 
abnormal heating of the atmosphere and can create a 
temperature inversion that traps pollutants. CFC pollutant 
contributes to the destruction of ozone layer in the upper 
atmosphere, thus the use of CFC will be limited in the 
world. City air may have an unacceptable level of SOx, 
NOx, and particles because of the heavy concentration of 
automobiles. Room air can be polluted by cigarette smoke 
which contains various poisonous gases including NH3. 
Animal farms can also emit ammonia. It has unpleasant 
odor, unhygienic and should be removed together with 
other pollutants like SOx, NOx, etc. 
The use of dc coronas for the removal of SOx and NOx 
from flue gas has been reported [1-3]. However, the 
process is energy inefficient and the performance is poor 
[4]. The poor performance is  probably due to the small 
ionization region of dc coronas (small active treatment 
volume), and a large amount of energy is expended on ion 
migration which does not contribute to the production of 
radicals. The use of a pulsed streamer corona discharge 
avoids these difficulties. Streamers propagate across the 
entire gas treatment avoids these difficulties. Streamers 
propagate across the entire gas treatment -volume between 
electrodes, ionizing molecules and producing free 
electrons. This results in a larger active gas treatment-
volume. The streamers leave positive ions which do not 
move significantly within their short period of the applied 
pulse with a subsequent improvement in power utilization 
efficiency. 
Silent (dielectric-barrier) discharges in plasma reactors 
have been used for ozone generation in planar and 
cylindrical gemoetries [5]. In the planar geometry, one or 
both of the gap electrodes are covered with a thin 
dielectric layer, such as glass. In the cylindrical geometry, 
the discharge wire is stressed by AC voltage and the outer 
cylinder is a metal foil wrapped around a glass tube. The 
reactor plasma self-extinguishes when charge builds-up 
on the glass and reduces the local electric field near the 
discharge wire. Efficient chemical-processing based 
reactors for cleaning air from gaseous pollutants have 
been developed [6, 7] utilizing pulsed plasma (PPCP) and 
surface plasma (SPCP). The SPCP reactor generate every 
strong plasma in the reactor which is effective to decrease 
SOx or NOx. The PPCP with square -wave applied voltage 

showed effectiveness in decomposing CFC [8] and in NOx 
removal [9] better than other AC discharge. With a helical 
discharge wire, the decomposition rate of CFC was higher 
[8] in comparison with a straight discharge wire extending 
along the axis of the of the cylindrical reactor. Moreover, 
helical discharge wire showed [10] higher yield ozone 
generation than straight wires. 
Modeling of dielectric-barrier discharges in plasma 
reactors of planar geometries has received the attention of 
some investigators [11,12]. Modeling of dielectric-barrier 
discharges in cylindrical plasma reactors with a helical 
discharge wire has not yet been reported in the literature. 

2. METHOD OF ANALYSIS 
Figure 1a shows a schematic of the investigated 
cylindrical plasma reactors with a helical discharge wire 
touching the inner surface of the glass tube. The outer 
surface of the tube is wrapped by aluminum foil. The 
helical wire is of radius rw, of pitch of τ and of N turns. 
The glass tube has inner radius rg, thickness t, length L 
and relative permittivity εr. 
The parametric equations which describe the coordinates 
(xc,  yx, zc) of any point on the axis of the discharge wire 
are expressed as: 
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where ψ is the angle defining the point on the wire -axis 
around the periphery of the tube. Fig. 1b. 
2.1 Electric Potential and Field Calculation:  
With the reactor stressed by an AC voltage, the surface 
charge on the helical wire as well as the charge on the 
inner and outer surfaces of the glass tube are not 
rotationally-symmetrical about factor axis. This represents 
a three-dimensional field problem and a combined 
technique based on boundary -elements and discrete-
charge simulation is used for field calculation. Fictitious 
discrete point charges [13,14] are chosen to simulate the 
surface charge on helical wire while surface-charged 
boundary elements [15,16] are selected to represent the 
charge on the inner and outer surfaces of the glass tube. 
2.2  Discrete -charges simulation technique applied to 

the helical wire: 
The surface charges on each turn (pitch) of the helical 
wire are simulated by N1 fictitious point charges 
distributed uniformly along the axis of the wire. The 
coordinates of each charge are expressed by eqn. (1) 
where ψ is incremented from a point charge to the next by 
angle ∆ψ=2π/N1. Thus, the unknown point charges 
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simulating the helical wire as a whole are q1, i=1, 2, …… 
N. N1, where N is the number of turns of the helical wire. 

 
 

2.3 Boundary-element simulation technique applied to 
the surfaces of the glass tube: 

The charge on each surface of the glass tube is simulated 
by Ne cylindrical elements in the φ-z coordinate system, 
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Fig. 1: The investigated reactor (a) Vertical cross-sectors 
             (b) Horizontal plan view  

Fig. 2: A boundary element on the surface of the  
glass tube  



 3

Fig.2.  
The charge density distribution in each element is 
expres sed as: 

φφσ zKzKKK 3210 +++=    (2) 

where K0,  K1,  K2 and K3 are coefficients related to the 
charge density values at the nodes of the elements. These 
elements form a grid on each surface of the glass tube 
where the face is divided into Nφ and Nz divisions along 
the φ - and z- directions, respectively i.e. Ne = Nφ . Nz .The 
charge density σj, j=1,2.……, Nφ,. (Nz+1) is evaluated at 
the nodes of the grid whose number equals Nφ .(Nz+1). 
Thus, the total number of unknowns involved in the 
simulation of the surface charge of the two surfaces of the 
glass tube is 2Nφ .(Nz+1). Therefore, the total number of 
unknowns involved in simulating the geometry as a whole 
(helical wire and glass tube) is N.N1+2Nφ,. (Nz+1). 
2.4 Potential equations:  
The potential φ at any point P(xp, yp,  zp) is the algebraic 
sum of potentials due to the point charges and surface–
charged boundary elements simulating the wire and the 
glass tube: 

),,(),,(),,( 21 ppppppppp zyxzyxzyx ϕϕϕ +=  (3) 

where ϕ1 and ϕ2 are respectively the contribution of the 
discrete point charge simulating the helical wire [13,14] 
and the boundary-element charges simulating the glass 
tube [15,16]. 
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where  
ii cc yx ,  and 

icz are the cartesian coordinates of the 

ith point charge as expressed by eqn. (1), ε0 is the 
permittivity of free space. 
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where K stands for the element number, (φ1,z1),(φ2,z1),(φ2, 
z2) , and  (φ1, z2) are the coordinates of the nodes in the φ-z 
coordinate system belonging to the kth element on the 
surface of the glass tube. 
∆φ and ∆z represent the dimensions of the element 
∆φ=2π/Nφ and ∆z=L/Nφ where L is the length of the glass 
tube in the z-direction. 
Ic,  Iz,  Iφ and Izφ are integral values expressed in terms of 
the coordinates of the nods of the  kth element and 
coordinates (xp, yp, zp) of the point P [15, 16]. 
To maintain the ground plane at zero potential, images of 
the charges simulating the rod and the barrier are taken 
into account. 
2.5 Field equations: 

The electric field E
r

(of components  Ex,  Ey,  Ez) at any 
point P(xp, yp,  zp) is the vectorial sum of the fields due to 
the point charges and boundary elements simulating the 
helical wire and the glass tube; 
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with yx aa
rr

, and za
r

as unit vectors along the x-,y- and z-

axes. 
The field components (Ex1, Ey1, Ez1) are those contributed 
by the point charges and obtained by differentiating the 
potential expressed by eqn. (4): 
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The field components (Ex2, Ey2, Ez2) are those contributed 
by the boundary-elements charges and obtained by 
differentiating the potential expressed by eqn. (6): 
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where Icx, Icy and Icz are respectively 
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2.6 Boundary conditions: 
The boundary conditions are Dirichlet condition at the 
helical wire and the outer surface of the glass tube. 
The calculated potential is equal to the applied voltage V 
at the surface of the helical wire (where the aluminum foil 
is wrapped and grounded), i.e. 

φ = V      (9) 
At the inner surface of the glass tube, the Neumonn 
condit ion, where the continuity of the normal electric flux 
density in (the r-direction) is satisfied, i.e. 

εr Erd = Era     (10) 
where Erd and Era are the r-components of the electric 
field calculated at any point on the inner surface of the 
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glass surface when seen from the dielectric and air sides 
respectively; 
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where σ is the value of the surface charge density at the 
point and is evaluated by eqn. (2). 
At the outer surface of the glass tube where the aluminum 
foil is wrapped; 

φ = 0.0     (11) 
2.7 Boundary points: 
The satisfy the boundary conditions, boundary points are 
chosen on the helical wire as well as the surface of the 
glass tube. 
Corresponding to each point charge simulating the surface 
charge on the helical wire (rg - 2rw), a boundary point is 
chosen with coordinates. 

xc = (rg - 2rw). cos  (ψ) 
yc = (rg - 2rw). sin  (ψ)  (12) 
zc = τ.ψ / (2π) 

On each surface of the glass tube, the boundary points are 
chosen uniformly distributed in the φ- and z- directions 
with a number equal to that of the nodes [=Nφ.(N z+ 1)] 
where the charge density values are to be evaluated. 
2.8 Determination of the unknowns: 
With the aid of eqns. (3) and (6) for the potential and 
field, the boundary conditions expressed by eqns. (9) 
through (11) are satisfied at the boundary points chosen 
on the helical wire and the glass tube. This results in a set 
of [=N.N1 +2(Nz + 1).Nφ] simultaneous equations whose 
solution determines the values of the unknowns; (qs), the 
values of the point charges and (σs), the charge-density 
values at the nodes on both surfaces faces of the glass 
tube. 
3. NUMERICAL DATA 
The helical wire of the investigated cylindrical plasma 
reactor (base case) has a radius rw of 0.5 mm, pitch τ of 
10mm and number of turns N of 10. The glass tube has 
inner radius rg of =10mm, thickness t of 1 mm and 
relative-permittivity εr of 3. The wire radius is increased 
to 0.75 mm, the pitch is increased to 16.667 mm and the 
relative permittivity is increased to 6. The thickness of the 
glass tube is increased to 2 mm. The length L of the glass 
tube is 100 mm and remains constant. Thus, the number 
of turns N is decreased from 10 (pitch = 10mm) to  
6 (pitch = 16.667 mm). The number of point charges N1 
per turn of the helical wire is chosen 90.  The number of 
divisions Nφ and Nz for the inner and outer surfaces of the 
glass tube are chosen 17 and 17. Thus, the number of 
unknown point charges simulating a 10-tum helical wire 
is 900 and the number of unknowns involved in the 
simulation of the inner and outer surfaces of the glass tube 
is 612.  Thus, the total number of unknowns involved in 
simulating the reactor as a whole is 1512.  This resulted in 
a deviation of the calculated potential by less than 0.1% 
of the voltage applied to the helical wire at check points 
selected between the boundary points on the wire.  
Moreover, the Neumann boundary condition is satisfied 
within an error not more that 1% at check points selected 
away from where the helical wire touches the inner 
surface of the glass tube.  At the touch points which 
represent triple-junction points the electric field is 

excessively high and could not be evaluated numerically 
[17,18]. 
In a related study,the effect of the surface charges on the 
side faces of a vertical barrier located nearby to a rod-gap 
was found neglig ible and the electric field values on the 
gap axis did not increase by more than 0.3% of their 
values when considering only the front and rear faces of 
the barrier [19]. In the present study, the thickness of the 
glass tube is small to the extent to consider only the 
charges on the inner and outer surfaces of the glass tube. 

4. RESULTS AND DISCUSSION 
As the pitch of the helical wire decreases, the potential 
and field along the reactor axis increases, Figs. 2 and 3. 
For the same pitch, the potential is small at the reactor 
ends and increases towards the center of reactor, Fig. 2. 
The increase is fast at first followed almost by a constant 
potential along the reactor axis. The electric field along 
the reactor axis, being equal to the potential derivative, is 
high at the reactor ends, Fig. 3.  All of this is attributed to 
the end effect of the reactor. 
In the mid-plane of the reactor, the field is maximum at 
the discharge-wire surface and decreases towards the 
center of the reactor. The field across the reactor diameter 
increases with the permittivity of the glass tube, Fig. 4, in 
conformity with Neumann condition. The field also 
increases with the diameter of the discharge wire, Fig. 5. 
However, the field decreases with the increase of the 
thickness of the glass tube, Fig. 6.  This is explained by 
the field enhancement due to the charge on the outer 
surface of the glass tube.  Such enhancement decreases 
with the increase of tube thickness. 

5. CONCLUSIONS: 
1. A combined method based on boundary-elements and 

discre te-charge simulation for evaluating the electric 
potential and field in cylindrical reactors with helical 
discharge wire is proposed. 

2. For the same pitch, the potential is small at the reactor 
ends and increases towards the center of reactor. 

3. For the same pitch, the electric field along the reactor 
axis, being equal to the potential derivative, is high at 
the reactor ends. 

4. The field across the reactor diameter is maximum at the 
discharge-wire surface and decreases towards the 
center of the reactor.   

5. The field across the reactor diameter increases with the 
permittivity of the glass tube, Fig. 4 and the diameter 
of the discharge wire. 

6. The field across the reactor diameter decreases with the 
increase of the thickness of the glass tube. 
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Fig. 4: Change of the electric field along the reactor 
diameter axis as influenced by the pitch of the 
helical wire. 
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Fig. 6: Change of the electric field along the reactor 
diameter axis as influenced by the pitch of the 
helical wire. 
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