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ABSTRACT

A recent algorithm for residual vector quantization is used
for coding image subbands. The algorithm, called trellis-
coded residual vector quantization, designs expanded code-
books by using trellis-coded quantization technique. The
new algorithm also takes advantage of multiple-stage quan-
tization feature embedded in a residual vector quantiza-
tion structure. The union of residual vector quantization
(RVQ) and trellis-coded vector quantization (TCVQ) in
trellis-coded residual vector quantization provides improved
rate-distortion performance for image subbands. Issues re-
garding the construction of image subbands and the bit
allocation problem are discussed in the paper. Simulation
results for test images are presented and compared with
other trellis-coded quantization based subband coding tech-
niques.

1. INTRODUCTION

Subband coding was introduced by Crochiere et al. in 1976
for speech. Since then, considerable attention has been de-
voted to subband coding of speech and it has proven to be
a powerful technique for the medium and low bandwidth
speech coding. In 1986, Wood and O'Neill demonstrated
the e�ectiveness of subband coding technique for images.
The basic idea of subband coding is to split up the frequen-
cy band into subbands and quantized and transmitted to
the deocder. In a subband decomposed image, the di�erent
subbands usually contain vastly di�erent amounts of ener-
gy. This property of subbands is utilized in coding. The
bands which contain more energy are quantized using a �n-
er quantizer and those bands which contain less energy are
quantized more coarsely.

Two important issues in subband image coding are the
selection of a quantization scheme and the distribution of
bits among various bands. The encoding of each subband is
usually carried out for each subband separately. However, it
is possible to jointly encode the subbands to take advantage
of inter-subband dependencies [1]. A scheme that is more
adaptive to image statistics is relatively easy to design by
separately encoding the subbands. Furthermore, separately
encoding the subbands makes it possible for us to see the
e�ect of quantization more clearly. Therefore, in this paper
we opted for separately encoding the subbands.

Most of the energy within subbands is con�ned to areas
corresponding to edges and strong textures in the original
image. The bands can be easily divided in two categories:
one corresponding to low frequencies present in the image
and the other containing high frequency details. The band-
s which belongs to the �rst category exhibit strong two-
dimensional correlation, while the other category has band-
s with very small amount of correlation. In this paper, we
proposed to apply conditional entropy-constrained trellis-
coded residual vector quantization (CEC-TCRVQ) for the
�rst category bands and entropy-constrained trellis-coded
residual vector quantization (EC-TCRVQ) for the second
category bands.

Conditional entropy-constrained trellis-coded residual
vector quantization (CEC-TCRVQ) is an extension to the
entropy-constained trellis-coded residual vector quantiza-
tion (EC-TCRVQ), introduced in [2]. The CEC-TCRVQ
employ adjacent vector conditioning to take advantage of
the two-dimensional correlation present in a low-frequency
band.

The organization of this paper is as follows: Section 2
discusses the details of subband decomposition with an oc-
tave band structure. Designing of codebooks for various
subbands is described in Section 3. Conditioning structure
to exploit the intra-band correlation is mentioned in Section
4. Section 5 describes the bit allocation strategy in detail.
Section 6 presents the simulation results and comparison
with a trellis-based subband image coding technique.

2. CONSTRUCTION OF IMAGE SUBBANDS

In our proposed scheme, the image is split into a pyramid,
and each pyramid subband is coded independently. The
pyramid construction process begins with the splitting of
the image into four subbands, and then continues with the
division of the lowpass band recursively up to the required
level of decomposition. Here we use three levels of decom-
position to get ten subbands. This spectral decomposition
is shown in Figure 1.

To get the image pyramids, we use 9-7 bi-orthogonal
�lters which are popular in the wavelet image coding com-
munity. Partly because many state-of-the-art image com-
pression methods, like EZW [3], LZC [4], MTWC [5], and
SPIHT [6], use this wavelet transform as their �rst step.
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Figure 1: Image decomposition

The coeÆcients of the right half of the analysis bank are
given in Table 1. The left side of the �lter is generated by
making use of the symmetry of the �lters. The synthesis
bank is generated using the following relationships:

~g(n) = (�1)1�n h(1� n); and

~h(n) = (�1)n g(1� n): (1)

Table 1: 9-7 Biorthogonal Filter Banks
Filter type Right-side Filter Filter

CoeÆcients Length
Low pass 1p

2
� [0:853; 0:3774;�0:11062; 9

�0:023849; 0:03783]
High pass 1p

2
� [0:7885;�0:4181;�0:04069; 7

0:06454]

3. DESIGNING OF CODEBOOKS

We used trellis-coded residual vector quantization for
designing the codebooks of the image pyramids by employ-
ing a training set of 14 (512 � 512) images. The image
subbands usually di�ered in their spectral contents [7],
therefore normalized codebooks were designed for each
subband by dividing all of the training data by their
respective standard deviations. The mean of the baseband
(LL3 band) was also subtracted. Therefore, the mean
of the baseband and the standard deviations of its ten
bands needed to be sent to the decoder. This overhead
information corresponds to a negligible increase in the
overall bit rate.

Figure 2 shows various trellis-coded residual vector
quantization schemes used to quantize the subbands. The
LL3 band which contains the texture, also contains strong
two-dimensional correlation. In order to e�ectively exploit
the correlation to reduce the bit rate, we coded the L-
L3 band using three-stage conditional entropy-constrained
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Figure 2: Trellis-coded quantization scheme for image sub-
bands

trellis-coded residual scalar quantization (CEC-TCRSQ).
The reason for using a scalar quantizer lies in the fact
that it is diÆcult to code textures using vector quantization
without producing visual artifacts. The bands HL3, HH3
and LH3, also contain some vertical and horizontal correla-
tion so we employed three-stage two-dimensional condition-
al entropy-constrained trellis-coded residual vector quanti-
zation. There is little correlation present in the HL2, H-
H2, and LH2 bands. Therefore, we used four-dimensional
trellis-coded residual vector quantization for these bands.
The HL1, HH1 and LH1 bands contained very small corre-
lation and also a small amount of image energy. Hence we
needed to code them at low bit rates. In our scheme, we
coded these bands using 16-dimensional trellis-coded resid-
ual vector quantization.

4. THE USE OF CONDITIONAL

ENTROPY-CONSTRAINED QUANTIZATION

IN SUBBAND IMAGE CODING

After the subband decomposition of an image, dependen-
cies may exist among the coeÆcents of the same band,
called intra-band dependencies and also across the bands,
referred to as inter-band dependencies. Although the de-
pendencies that still exist after subband decomposition are
not as strong as they were in the spatial domain, neverthe-
less the coding performance can be improved by employing
quantization schemes that exploit those dependencies. For
that purpose, di�erential pulse code modulation (DPCM)
was applied successfully to all the subbands in [8] and to
the low-pass subband in [9] and [10].

In [1], authors tried to use Lagrangian formulation in
order to jointly optimize the subband coder. The joint op-
timization framework was constructed by viewing the set of
subband quantizers in terms of a structurally constrained
product quantizer, consisting of all possible combinations
of outputs from subband quantizers. The optimality condi-
tions are developed and an iterative design algorithm can be
formulated that satis�es these conditions. The conditioning
support for this technique is spread among the subbands.
The best inter- and intra-band conditioning symbols are s-



elected among vectors closer in space or frequency to the
current vector. This scheme has resulted in improved per-
formance over all other subband coding schemes.

We also used the Lagrangian formulation for exploiting
the correlation present in a given subband. For this pur-
pose, we used conditional entropy-constrained trellis-coded
residual vector quantization for image bands that exhibit
large correlation. We based the intra-stage conditioning in
a speci�c band based on its orientation. For the LL3 band
in Figure 8.1 we chose the left most vector and the vec-
tor on top of the given input vector for the second-order
inter-stage conditioning. The HL3 band, which contained
horizontal correlation, was coded using inter-stage condi-
tioning of the left most vector. The LH3 band makes use of
a vertical top vector for inter-stage conditioning. The rest of
the bands are coded using entropy-constrained trellis-coded
RVQ, which does not employ any inter-stage conditioning.

5. BIT ALLOCATION

Once the quantization scheme is speci�ed for the image
pyramids, the next issue is how to distribute the bit bud-
get among the subbands. Westerink, Biemond, and Boekee
[11] developed an optimal bit allocation algorithm based on
the subband variance. Riskin [12] restated their algorithm
using the generalized BFOS algorithm for both cases of con-
vex and non-convex operational distortion-rate functions.

Bit allocation using the generalized BFOS algorithm
was �rst suggested in [13]. The generalized BFOS algo-
rithm is an extension of an algorithm for optimal pruning,
in tree-structured classi�cation and regression [14], to cod-
ing. For a source coding application, it �nds a sequence of
nested subtrees of a given tree-structured coder. The selec-
tion of a subtree is optimal in that it has the lower average
distortion of all subtrees of the tree with the same or lower
average rate.

In our context of bit-allocation, the BFOS algorithm
can be used as follows: construct a tree T with l subtrees
where each subtree is a unary tree and represents a sub-
band. In each subtree we have k nodes where each node is
represented by an (R;D) point found during the quantiza-
tion design. The topmost node in the subtree corresponds
to the zero-rate codebook, i.e., the Lagrangian parameter
� has its maximum value. Moving down in the subtree, we
decrease the � values, and at the bottom of this subtree, we
�nd the (R;D) point that corresponds to � = 0. This node
is called \the leaf node". According to this organization, if
we move downward along the subtree, the rate at each node
increases, and the distortion decreases. Besides the (R;D)
point stored at each node, we also store a parameter called
s which is de�ned to be the ratio ÆD=ÆR, where ÆD and
ÆR denote the magnitude of the di�erence between the dis-
tortion and the rate at the current node and the leaf node
respectively. The value s can also be interpreted as a slope
that trades o� D and R in each subband.

If we denote the initial tree by TI , the generalized B-
FOS algorithm will prune o� the branches of the initial tree
in order to form the �nal pruned tree TF . In this pruning
operation, the algorithm obtains a sequence of trees where
each intermediate tree Ti+1 is obtained by pruning o� the
node having the smallest slope s in the tree Ti. The pruned

leaf node belongs to a certain subtree, and therefore this
iteration provides a new leaf node in the previous tree. Af-
ter this procedure, the s ratio must be re-calculated in this
new tree Ti+1. The algorithm ends when the sum of the
leaf node rates drops below the target rate. The codebook
used to encode each subband corresponds to the codebook
speci�ed by the leaf nodes of the �nal pruned tree TF .

6. SIMULATION RESULTS

In this section, we present results for 512� 512 Lena image
at low bit rates. We compared our results with quad-tree
based trellis-coded quantization (QTCQ) recently develope-
d by Banister and Fisher [15],[16]. QTCQ employs a form
of wavelet coeÆcient classi�cation used in the SPIHT al-
gorithm [6]. This classi�cation is based on the quad-tree
structure and moves across the subbands to get classed with
coeÆcients with minimum intra-class correlation. Then
these magnitude-threshold-based classes are coded using
arithmetic-coded trellis-coded scalar quantization. In or-
der to provide a fair comparison, we also used a three-level
decomposition in the QTCQ.

For the bit allocation tree, we obtained thirty rate-

Subband Training set Lena
D R D R

LH1 2.137 0.001 3.930 0.013
HL1 6.542 0.103 5.589 0.123
HH1 3.446 0.006 2.094 0.005
LH2 4.683 0.121 3.565 0.175
HL2 6.769 0.451 5.554 0.468
HH2 2.667 0.428 2.379 0.439
LH3 0.985 1.374 0.959 1.284
HL3 1.204 1.983 1.248 1.855
HH3 0.964 1.484 0.462 1.233
LL3 0.954 6.013 0.868 5.455

Total 30.35 0.27 26.648 0.25
Actual Distortion = 28.169

Table 2: Bit allocation for test image Lena at 0.25 bits per
pixel.

distortion pairs for each subband. The tree has ten branch-
es with thirty points on each branch. The bit allocation
algorithm described earlier in section 8.4 is applied to the
tree. Table 6 shows the �nal results among the various
subbands of Lena for the rate of 0.25 bits per pixel. The
total distortion value in the table is obtained by adding the
individual distortion of all the subbands. The actual distor-
tion, listed at the bottom, is the actual mean squared-error
between the coded and original images. This value di�ers
from the total distortion because the �lters are not ideal.
Another interesting point is that the mismatch between the
actual result and the result inside the training set (TS) is
low. This happens because we use normalized codebooks.

We also coded image Mo�ett from University of Cali-
fornia Los Angles image database. The results are shown
in Figure 6.

Figure 4 compares our TCRVQ-based subband coder
(TCRVQ-SBC) with other results in the literature for the
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Figure 3: Image Mo�ett coded at 0.22 bits per pixel using (a) QTCQ (b) our proposed image coder.
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Figure 4: Comparison of subband coding performance for
\Lena".

test image Lena. Kim and Modestino [17] report PSNR's
of 34.04 dB, 35.28 dB, 35.98 dB, 37.23 dB for bit rates
of 0.31, 0.41, 0.48, and 0.64 bpp, respectively, for their
entropy-constrained subband coder (2-D ECSBC). Joshi,
Crump and Fischer [18] devloped arithmetic-coded trellis-
coded subband image coder (ACTCQ-SBC) and is shown to
provide about 0.25 dB improvement over the 2-D ECSBC
design. Sriram and Marcellin [19] report PSNR's of 34.01,
36.70, and 40.06 dB for bit rates of 0.27, 0.47, and 0.95 bits
per pixel, respectively, for their entropy-constrained trellis-
coded quantization based subband image coder (ECTCQ-
SBC). SPIHT [6] results are also displayed in the �gure.

The �gure shows that our coder does better than the
ACTCQ-SBC and the 2-D ECSBC. Comparing the perfor-
mance of our coder with that of ECTCQ-SBC shows that
TCRVQ-SBC performance is worse by about 0.5 dB at 0.5
bits per pixel and is about 0.15 dB worse at 0.25 bits per
pixel. This may be due to the reason that ECTCQ is a sin-
gle stage system as compared to ECTCRVQ. The TCRVQ-
SBC performs worse in comparison to SPIHT by about 0.6
dB. We believe that this gap is due to the reason that SPI-
HT coder exploits inter-band dependence while our codeer
does not.

7. CONCLUDING REMARKS

Our proposed subband-coder seems to provide low-contrast
images at low bit rates compared to the QTCQ-based
scheme. On the other hand, our proposed scheme does an
excellent job at preserving low-magnitude textures present
in some images. The QTCQ-based scheme which employs
magnitude-based classes does not make it to low magnitude
classes as its bit budget is �nished well before that, and
hence does a poor job at preserving the small-magnitude
texture.
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