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Abstract - Frequency analysis using the DFT, the DHT, the 
DCT or the DST (DTs) is an obvious choice for image and 
signal processing domain. There are many algorithms for 
calculating the members of the DT family and each of them 
has its own merits and weaknesses. In this paper, we have 
exploited Distributed Arithmetic (DA) to develop a single 
stand-alone system for calculation of the desired 
transforms. We have also tried to justify the use of the 
above-mentioned algorithm. This paper describes the 
simulation and the implementation of a DXT coprocessor 
of transform length '8' for the synchronous design in an 
FPGA device (XILINX VIRTEX-II). The paper presents 
the trade-offs involved in designing the architecture and 
the design for performance issues.  

Index Terms — DXT, Coprocessor, Distributed 
Arithmetic. 

I. INTRODUCTION 

Memory based Field Programmable Gate Arrays 
(FPGAs) have the advantage of real-time in-circuit re-
configurability as opposed to other gate arrays of similar 
gate density. This advantage translates into unlimited, 
in-circuit flexibility, re-configurability and reliability, 
facilitating prototyping of complex electronic designs 
[1]. FPGA devices have been used to implement Custom 
DSPs since the beginning of this decade [2]. Usually, 
FPGAs are used as VLSI replacement on low volume 
production or prototyping devices which are to be 
eventually implemented as ASICs. Their 100% 
testability and the possibility of achieving a high degree 
of fault coverage makes them increasingly attractive for 
complex designs with multiple iterations on their design 
cycles [1]. 

 The FPGA devices have benefited from the 
improvements in VLSI technology, leading to higher 
speed and capability as well as lower power 
consumption [2]. Discrete Transforms (DT’s) has found 
wide application in signal processing in general and 
special uses that are customized for a particular task. 
The DT algorithms are very well known and due to their 
versatility and very simple hardware implementation are 
widely used for VLSI digital signal processing systems. 
The discrete Hartley transform (DHT) has been 
established as a potential tool for signal processing and 
communication applications, e.g., computation of 
circular convolution, and deconvolution, interpolation of 

real-valued signals, image compression, error control 
coding, adaptive filtering, multi-carrier modulation and 
many other applications [3]. DHT has found popularity 
in recent years and is expected to replace DFT in many 
spectral analysis schemes. Discrete Fourier Transform 
(DFT) is the foundation of the DT family and there are 
numerous algorithms for its computation. DFT is 
especially good for spectral analysis but has some other 
uses such as image processing, solving partial 
differential equations and multiplication of large 
integers. DFT and DHT are also very important because 
they can be used to compute the convolution of two 
signals. Discrete Cosine Transform (DCT) has long been 
used in image and speech processing and is the optimum 
fast algorithm for image and data compression 
applications and forms a key role in many image and 
video compression standards including JPEG2000 for 
still image compression, ITU H.261 and H.263 in 
teleconferencing and ISO MPEG1 and MPEG2 for 
moving pictures and home video. In addition DCT has 
been used in filtering and feature extraction [4, 5, 6]. 
The discrete sine transform (DST) is useful for spectrum 
analysis, data compression, speech processing, 
biomedical signal processing and in many other 
applications. These basic signal processing transforms 
are required in almost all the phases of image and signal 
processing and cover a large range of biomedical signal 
and image processing, for various imaging techniques 
and spectral analysis of the signals [5]. There are various 
algorithms for computation of Discrete Transforms that 
have been developed over the years. In the case of DFT 
we have Radix-2, Radix-4, Split-Radix, Fast Hartley 
Transform (FHT), and the Decimation-in-Time-
Frequency (DITF) algorithms to name just a few. A 
number of architectures are proposed for the realization 
of these transforms [2-8]. However, a unified 
architecture, which can compute all these transforms, 
can serve the purpose of a general DSP chip, and 
therefore a unified architecture has been adopted to 
obtain all the transforms in a single FPGA chip. There 
are some implementations for the DXT calculations, but 
two of the more important ones are Systolic architecture 
(SA) and Distributed Arithmetic. In this paper we have 
used DA due to its suitability for FPGA implementation 
and because it shows dramatic improvements and better 
performances in comparison with the SA technique in 
terms of speed and area consumption [6]. The basic 
structure of all the transforms, DFT, DCT, DHT and 



DST, are almost equivalent and this property has been 
exploited in the design of the unified architecture. In fact 
we have used DA to calculate DCT and DST transforms 
and added some glue logic to make the architecture 
suitable for calculation of the other two transforms i.e. 
DHT and DFT.  

II. DISTRIBUTED ARITHMETIC 
   Distributed Arithmetic (DA) plays a key role in 
embedding   DSP functions in FPGA devices because 
the algorithm is based on Look-up table (LUT). DA is 
one of the most common techniques where the multiply 
– accumulate is of paramount importance. Its greatest 
advantage is in using additions instead of multiplications 
which is desirable since a multiplication consumes much 
more time than an addition.   

III. DXT TRANSFORMS 
   This Section presents the transforms in detail and the 
possibility of their implementation as the basic 
processing elements. For a real sample sequence f (n), 
where )1,...,1,0( −∈ Nn   the DXT, a collective term 
representing the DFT, the DHT, the DCT and the DST, 
can be defined as: 
DCT: 
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A. DCT and DST  
According to the definition of DCT, for a given data 
sequence 1}- N , ... 2, 1, 0, n :)({ =nx , the DCT data 
sequence 1}- N , ... 2, 1, 0, n :)({ =nC  is given by Equation 
(1).Or in a different representation: 
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Where, A is the transform matrix. The real-time 
computation of DCT requires a lot of calculations 
because of the large number of multiplications involved, 
therefore much effort has gone into reducing the total 
number of multiplies. From Chen et al [9] it can be 
shown that we can divide the transform matrix A into 
two smaller matrices, significantly reducing the total 
number of multiplications. The DCT is now obtained 
from the following two equations:  
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In an 8-point DCT transform matrix A in Equation(5) 

is an )88( × matrix and due to the symmetry of A it can 
be replaced by two )44( × matrices which can be 
computed in parallel, as can the sums and differences 
forming the Equations (8,9) 

)9(

)8(

43

52

61

70

7

5

3

1

43

52

61

70

6

4

2

0



























−

−

−

−



























−−

−

−−−
=





















































+

+

+

+



























−−

−−

−−
=



























xx

xx

xx

xx

aceg

cgae

eagc

geca

Y

Y

Y

Y

xx

xx

xx

xx

fbbf

dddd

bffb

dddd

Y

Y

Y

Y

  
 

Figure 1 illustrates the overall architecture of an 8-point 
1-D DCT. We can implement the 4-product MAC in two 
ways: one using conventional arithmetic and the other 
with serial distributed arithmetic as is shown in figures 2 
and 3. It is clearly obvious that great reductions on the 
hardware will be achieved when using the distributed 
arithmetic. So In our implementation we have used the 
4-product MAC using Serial Distributed Arithmetic. 



 
Fig.1. 8-point 1-D DCT. 
    

 
Fig.2. 4-product MAC using Conventional Arithmetic 

 
Fig.3.     4-product MAC using Serial Distributed Arithmetic 

We now give a brief explanation of how this architecture 
works using the 8-point DCT example presented in 
figure 1. The four sum boxes in fig.1 are the equivalents 
of the corresponding sums in parenthesis in Equation (6) 
and so are the four difference boxes and differences in 
Equation (7). In the next stage we have 4-product MACs 
which each one consists of four multiplication units that 
are added together to produce the SUM output as 
illustrated in figure 2 (although, we have used the 
architecture in figure 3, which produces the same result). 
If we examine Equations (6, 7) again, we can observe 
that the coefficient matrices are 4x4 in the case of an 8-
point DCT and that is why we have used 4-product 
MACs. Each 4-product MAC calculates the 
multiplication of two vectors: one row of the coefficient 

matrix and the other vector consisted of four sum boxes 
(or difference boxes). The outputs of the MACs are not 
in the correct order and need reordering.  In the final 
stage there is a Data Format Converter that has the task 
of rearranging the outputs of the MACs and delivers the 
final DCT result.  

It should be noted that the calculation of DST is similar 
to DCT with the only distinction being the different 
coefficient matrices. So we are not going into details 
about it any further. 

The reduction in hardware in distributed arithmetic is 
evident from the previous figures. We have used ROMs 
to store the coefficients needed, speeding up the 
transform calculation by a large degree. But using 
ROMs has the disadvantage of adding to the hardware 
cost, which is undesirable. It can be ameliorated by 
using the CORDIC algorithm to calculate the 
coefficients but in real-time applications such as video 
and image processing it is not feasible and the use of the 
CORDIC algorithm is left for special CORDIC 
processors where speed is not vital. 

 

B.DHT and DFT using DCT and DST 
      In the previous section we developed a system for 
calculation of DCT (and DST) using DA. Now we want 
to use this system to compute the other two transforms. 
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The above equation is the definition of an N+1-point 
discrete cosine transform (DCT). The definition for an 
N-1 point discrete sine transform (DST) is given below: 
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There exist the following symmetry relations in the sine 
and cosine functions: 
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We can divide the input signal into its even and odd 
parts as follows: 
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We can now define the N-point DFT as: 
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Fig. 4.     DFT architecture using DCT and DST 
 
It is now possible to compute the DFT using DCT and 
DST with the above equations. The calculation of the 
DHT is the same if with omit the j from the Equations 
(17) and (18). It implies that for computing the N-point 
DFT (or DHT) we need to compute an 1

2
−

N  point DCT 

and an 1
2

−
N  Point DST and then add or subtract them 

accordingly to achieve the desired results, as is evident 
graphically from figure 4. Now we have to combine the 
developed systems into a single general system that is 
capable of calculation of all four transforms. We have 
shown the final system that is to be implemented in an 
FPGA, in figure 6. 
 

VI. IMPLEMENTATION RESULTS 
   The whole architecture including the computation, 
data path, and control unit is modeled at Register 
Transfer Level in VHDL, simulated and tested by a test 
bench using Modelsim SE 6.1b and implemented in a 
FPGA device (XILINX VIRTEX-II).  
Since we have computed the DFT and DHT using DCT 
and DST, the total MACs required for each of the 
transforms as can be seen from Fig. 6 is 8 MACs. The 
RTL view of the proposed MAC is shown in Fig. 5. 
The Hardware description of this architecture for DCT, 
DST, DHT and DFT  implementations of transform 
length '8' was synthesized using FPGA tools (Synplify 
VHDL Compiler, version 8.1) and mapped on the 
xc2v250cs144-6 FPGA chip. In the 8-bit DXT 
implementation, the estimated frequency is 157 MHz the 
routed IP takes total of 1777 LUTs which is 57 percent 

of the chip. Note that this technique can be easily 
extended to implement 16 bit DXT since the symmetry 
relations of (12) and (13) are still true and the hardware 
resources will grow linearly.  

VII. CONCLUSION 

   This paper has proposed an efficient architecture of a 
common DXT Coprocessor of transform length '8' for 
the synchronous design. The Direct fast DCT algorithm 
based on Chen et al’s method was presented and then a 
method of composing the discrete sine-transform from 
the discrete cosine transform is demonstrated. The DHT 
is implemented by DFT, which is based on DCT/DST 
Algorithm. We have exploited Distributed Arithmetic 
(DA) in order to achieve surface reduction and precision 
amelioration compared to conventional algorithm.  
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Fig. 5.    RTL view of the proposed MAC 

 

 
Fig. 6.    Final DXT System 


