
Design and Implementation of a 157 MHz
DA-Based DXT CoProcessor

Reza Ebrahimi Atani, Sattar Mirzakuchaki, Farshid Samii, Mohammed Reza Nasrollahzadeh
Iran University of Science and Technology, Narmak, Tehran 16844, Iran

Abstract - Frequency analysis using the DFT, the DHT, the
DCT or the DST (DTs) is an obvious choice for image and
signal processing domain. There are many algorithms for
calculating the members of the DT family and each of them
has its own merits and weaknesses. In this paper, we have
exploited Distributed Arithmetic (DA) to develop a single
stand-alone system for calculation of the desired
transforms. We have also tried to justify the use of the
above-mentioned algorithm. This paper describes the
simulation and the implementation of a DXT coprocessor
of transform length '8' for the synchronous design in an
FPGA device (XILINX VIRTEX-II). The paper presents
the trade-offs involved in designing the architecture and
the design for performance issues.

Index Terms — DXT, Coprocessor, Distributed
Arithmetic.

I. INTRODUCTION

Memory based Field Programmable Gate Arrays
(FPGAs) have the advantage of real-time in-circuit re-
configurability as opposed to other gate arrays of similar
gate density. This advantage translates into unlimited,
in-circuit flexibility, re-configurability and reliability,
facilitating prototyping of complex electronic designs
[1]. FPGA devices have been used to implement Custom
DSPs since the beginning of this decade [2]. Usually,
FPGAs are used as VLSI replacement on low volume
production or prototyping devices which are to be
eventually implemented as ASICs. Their 100%
testability and the possibility of achieving a high degree
of fault coverage makes them increasingly attractive for
complex designs with multiple iterations on their design
cycles [1].

 The FPGA devices have benefited from the
improvements in VLSI technology, leading to higher
speed and capability as well as lower power
consumption [2]. Discrete Transforms (DT’s) has found
wide application in signal processing in general and
special uses that are customized for a particular task.
The DT algorithms are very well known and due to their
versatility and very simple hardware implementation are
widely used for VLSI digital signal processing systems.
The discrete Hartley transform (DHT) has been
established as a potential tool for signal processing and
communication applications, e.g., computation of
circular convolution, and deconvolution, interpolation of

real-valued signals, image compression, error control
coding, adaptive filtering, multi-carrier modulation and
many other applications [3]. DHT has found popularity
in recent years and is expected to replace DFT in many
spectral analysis schemes. Discrete Fourier Transform
(DFT) is the foundation of the DT family and there are
numerous algorithms for its computation. DFT is
especially good for spectral analysis but has some other
uses such as image processing, solving partial
differential equations and multiplication of large
integers. DFT and DHT are also very important because
they can be used to compute the convolution of two
signals. Discrete Cosine Transform (DCT) has long been
used in image and speech processing and is the optimum
fast algorithm for image and data compression
applications and forms a key role in many image and
video compression standards including JPEG2000 for
still image compression, ITU H.261 and H.263 in
teleconferencing and ISO MPEG1 and MPEG2 for
moving pictures and home video. In addition DCT has
been used in filtering and feature extraction [4, 5, 6].
The discrete sine transform (DST) is useful for spectrum
analysis, data compression, speech processing,
biomedical signal processing and in many other
applications. These basic signal processing transforms
are required in almost all the phases of image and signal
processing and cover a large range of biomedical signal
and image processing, for various imaging techniques
and spectral analysis of the signals [5]. There are various
algorithms for computation of Discrete Transforms that
have been developed over the years. In the case of DFT
we have Radix-2, Radix-4, Split-Radix, Fast Hartley
Transform (FHT), and the Decimation-in-Time-
Frequency (DITF) algorithms to name just a few. A
number of architectures are proposed for the realization
of these transforms [2-8]. However, a unified
architecture, which can compute all these transforms,
can serve the purpose of a general DSP chip, and
therefore a unified architecture has been adopted to
obtain all the transforms in a single FPGA chip. There
are some implementations for the DXT calculations, but
two of the more important ones are Systolic architecture
(SA) and Distributed Arithmetic. In this paper we have
used DA due to its suitability for FPGA implementation
and because it shows dramatic improvements and better
performances in comparison with the SA technique in
terms of speed and area consumption [6]. The basic
structure of all the transforms, DFT, DCT, DHT and

DST, are almost equivalent and this property has been
exploited in the design of the unified architecture. In fact
we have used DA to calculate DCT and DST transforms
and added some glue logic to make the architecture
suitable for calculation of the other two transforms i.e.
DHT and DFT.

II. DISTRIBUTED ARITHMETIC
 Distributed Arithmetic (DA) plays a key role in
embedding DSP functions in FPGA devices because
the algorithm is based on Look-up table (LUT). DA is
one of the most common techniques where the multiply
– accumulate is of paramount importance. Its greatest
advantage is in using additions instead of multiplications
which is desirable since a multiplication consumes much
more time than an addition.

III. DXT TRANSFORMS
 This Section presents the transforms in detail and the
possibility of their implementation as the basic
processing elements. For a real sample sequence f (n),
where)1,...,1,0(−∈ Nn the DXT, a collective term
representing the DFT, the DHT, the DCT and the DST,
can be defined as:
DCT:

() ()[]

)1(
1

0
2

1
1,....2,1,0

2/12cos).(2 1

0





 =

=−=

+= ∑
−

=

otherwise

kwhereNk

Nknnx
N

kC

k

k

N

n

ε

πε

DST:

() ()[]

)2(
1
2

1
,....2,1

2/12sin).(2 1

0





 =

==

+= ∑
−

=

otherwise

NkpwhereNk

Nknnxp
N

kS

k

k

N

n

π

DFT

)3()()()(
1,,2,1,0

2sin2cos)()(
1

0

kjFkFkF
Nk

N
knj

N
knnxkF

yx

N

n

+=
−=















−






= ∑

−

=

L

ππ

DHT

)4(1,,2,1,0

2sin2cos)()(
1

0

−=















+






= ∑

−

=

Nk

N
kn

N
knnxkH

N

n

L

ππ

A. DCT and DST
According to the definition of DCT, for a given data
sequence 1}- N , ... 2, 1, 0, n :)({ =nx , the DCT data
sequence 1}- N , ... 2, 1, 0, n :)({ =nC is given by Equation
(1).Or in a different representation:

() (5))(,

1

0
nkn

N

n

xAkC ∑
−

=

=

Where, A is the transform matrix. The real-time
computation of DCT requires a lot of calculations
because of the large number of multiplications involved,
therefore much effort has gone into reducing the total
number of multiplies. From Chen et al [9] it can be
shown that we can divide the transform matrix A into
two smaller matrices, significantly reducing the total
number of multiplications. The DCT is now obtained
from the following two equations:

()

() (7)k oddfor)(

(6)keven for)(

1,

1
2

0

1,

1
2

0

nNnkn

N

n

nNnkn

N

n

xxAkX

xxAkX

−−

−

=

−−

−

=

−=

+=

∑

∑

In an 8-point DCT transform matrix A in Equation(5)

is an)88(× matrix and due to the symmetry of A it can
be replaced by two)44(× matrices which can be
computed in parallel, as can the sums and differences
forming the Equations (8,9)

)9(

)8(

43

52

61

70

7

5

3

1

43

52

61

70

6

4

2

0



























−

−

−

−



























−−

−

−−−
=





















































+

+

+

+



























−−

−−

−−
=



























xx

xx

xx

xx

aceg

cgae

eagc

geca

Y

Y

Y

Y

xx

xx

xx

xx

fbbf

dddd

bffb

dddd

Y

Y

Y

Y

Figure 1 illustrates the overall architecture of an 8-point
1-D DCT. We can implement the 4-product MAC in two
ways: one using conventional arithmetic and the other
with serial distributed arithmetic as is shown in figures 2
and 3. It is clearly obvious that great reductions on the
hardware will be achieved when using the distributed
arithmetic. So In our implementation we have used the
4-product MAC using Serial Distributed Arithmetic.

Fig.1. 8-point 1-D DCT.

Fig.2. 4-product MAC using Conventional Arithmetic

Fig.3. 4-product MAC using Serial Distributed Arithmetic

We now give a brief explanation of how this architecture
works using the 8-point DCT example presented in
figure 1. The four sum boxes in fig.1 are the equivalents
of the corresponding sums in parenthesis in Equation (6)
and so are the four difference boxes and differences in
Equation (7). In the next stage we have 4-product MACs
which each one consists of four multiplication units that
are added together to produce the SUM output as
illustrated in figure 2 (although, we have used the
architecture in figure 3, which produces the same result).
If we examine Equations (6, 7) again, we can observe
that the coefficient matrices are 4x4 in the case of an 8-
point DCT and that is why we have used 4-product
MACs. Each 4-product MAC calculates the
multiplication of two vectors: one row of the coefficient

matrix and the other vector consisted of four sum boxes
(or difference boxes). The outputs of the MACs are not
in the correct order and need reordering. In the final
stage there is a Data Format Converter that has the task
of rearranging the outputs of the MACs and delivers the
final DCT result.

It should be noted that the calculation of DST is similar
to DCT with the only distinction being the different
coefficient matrices. So we are not going into details
about it any further.

The reduction in hardware in distributed arithmetic is
evident from the previous figures. We have used ROMs
to store the coefficients needed, speeding up the
transform calculation by a large degree. But using
ROMs has the disadvantage of adding to the hardware
cost, which is undesirable. It can be ameliorated by
using the CORDIC algorithm to calculate the
coefficients but in real-time applications such as video
and image processing it is not feasible and the use of the
CORDIC algorithm is left for special CORDIC
processors where speed is not vital.

B.DHT and DFT using DCT and DST
 In the previous section we developed a system for
calculation of DCT (and DST) using DA. Now we want
to use this system to compute the other two transforms.

(10) 1-N ,0,k)()(

0

…== ∑
=

N

n
DCT N

nkCosnxkX π

The above equation is the definition of an N+1-point
discrete cosine transform (DCT). The definition for an
N-1 point discrete sine transform (DST) is given below:

(11) 1-N ,1,k)()(
1

1

…== ∑
−

=

N

n
DST N

nkSinnxkX π

There exist the following symmetry relations in the sine
and cosine functions:

(12)2)(2







=






 −

N
nkCos

N
knNCos ππ

(13)2)(2







−=






 −

N
nkSin

N
knNSin ππ

We can divide the input signal into its even and odd
parts as follows:

 (14) 1-N/2,1,k)()()(…=−+= kNxkxkxe
(15) 1-N/2,1,k)()()(…=−−= kNxkxkxo

With the exceptions:

 (16))2/()2/(),0()0(NxNxxx ee ==
We can now define the N-point DFT as:

(17) 1-N/2,1,k
)()()(

…=
−= kjXkXkX DSTDCT

(18) 1-N/2,1,k
)()()(

…=
+=− kjXkXkNX DSTDCT

With the special cases:

(19))2/()2/(),0()0(NXNXXX DCTDCT ==

Fig. 4. DFT architecture using DCT and DST

It is now possible to compute the DFT using DCT and
DST with the above equations. The calculation of the
DHT is the same if with omit the j from the Equations
(17) and (18). It implies that for computing the N-point
DFT (or DHT) we need to compute an 1

2
−

N point DCT

and an 1
2

−
N Point DST and then add or subtract them

accordingly to achieve the desired results, as is evident
graphically from figure 4. Now we have to combine the
developed systems into a single general system that is
capable of calculation of all four transforms. We have
shown the final system that is to be implemented in an
FPGA, in figure 6.

VI. IMPLEMENTATION RESULTS
 The whole architecture including the computation,
data path, and control unit is modeled at Register
Transfer Level in VHDL, simulated and tested by a test
bench using Modelsim SE 6.1b and implemented in a
FPGA device (XILINX VIRTEX-II).
Since we have computed the DFT and DHT using DCT
and DST, the total MACs required for each of the
transforms as can be seen from Fig. 6 is 8 MACs. The
RTL view of the proposed MAC is shown in Fig. 5.
The Hardware description of this architecture for DCT,
DST, DHT and DFT implementations of transform
length '8' was synthesized using FPGA tools (Synplify
VHDL Compiler, version 8.1) and mapped on the
xc2v250cs144-6 FPGA chip. In the 8-bit DXT
implementation, the estimated frequency is 157 MHz the
routed IP takes total of 1777 LUTs which is 57 percent

of the chip. Note that this technique can be easily
extended to implement 16 bit DXT since the symmetry
relations of (12) and (13) are still true and the hardware
resources will grow linearly.

VII. CONCLUSION

 This paper has proposed an efficient architecture of a
common DXT Coprocessor of transform length '8' for
the synchronous design. The Direct fast DCT algorithm
based on Chen et al’s method was presented and then a
method of composing the discrete sine-transform from
the discrete cosine transform is demonstrated. The DHT
is implemented by DFT, which is based on DCT/DST
Algorithm. We have exploited Distributed Arithmetic
(DA) in order to achieve surface reduction and precision
amelioration compared to conventional algorithm.

REFERENCES
[1] J.Davidson “FPGA Implementation of a Reconfigurable

Microprocessor”, IEEE Custom Integrated Circuits
Conference p.p.3.2.1 - 3.2.4, 9-12 May 1993.

[2] P.K.Meher, T.Srikanthan, J.C.Patra "Scalable and Modular
Memory-Based Systolic Architectures for Discrete
Hartley transform", IEEE Trans. on Circuits and Systems
I: regular papers, VOL. 53, NO. 5, MAY 2006.

[3] A. Amira and A. Bouridane “ An FPGA Implementation of
Discrete Hartley Transforms”, IEEE Seventh
International Symposium on Signal Processing and Its
Applications, Volume 1, P.P.625 - 628, 1-4 July 2003 .

[4] B.Das, S.Banerjee, "Unified CORDIC-based chip to realize
DFT/DHT/DCT/DST", IEE Proc. Computer Digit. Tech.,
Vol. 149, No. 4, July 2002.

[5] K.R Rao and P.Yip “Discrete Cosine Transform,
Algorithms, Advantages, applications”, Academic Press,
San Diego, California, 1990.

[6] M.Amiri, R.Ebrahimi Atani, S.Mirzakuchaki, M.Mahdavi
”Design and Implementation of 50 MHz DXT
Coprocessor” 10th Euro micro Conference on Digital
System Design, Lubeck, Germany, August 29-31, 2007.

[7] Angarita, F.P.Pascual, A.Sansaloni, T.Vails, “Efficient
FPGA implementation of CORDIC algorithm for circular
and linear coordinates“, Field Programmable Logic and
Applications International Conference, p.p. 535 – 538,
24-26 Aug. 2005.

[8] H. EL-Bannai, A. A. EL-Fattah, W. Fakhr, "An efficient
implementation of the 1D DCT using FPGA technology",
ICM 2003, Dec. 9-11, Cairo, Egypt, 2003.

[9] W. Chen, C.H.Smith, S.C.Fralick, "A fast computational
algorithm for the discrete Cosine transform", IEEE Trans.
Commun. , VOL. Com-25, p.p. 1004-1009 1977.

[10] B.G. Lee "A new algorithm to compute the discrete
cosine transform", IEEE Trans. Acoustics, Speech, Signal
Processing, vol. ASSP-32, p.p.1243-1245, Dec. 1984.

Fig. 5. RTL view of the proposed MAC

Fig. 6. Final DXT System

