
SWOLO: A SWEBOK-based Ontology for Learning Objects
Imran A. Zualkernan

American University of Sharjah, UAE, izualkernan@aus.edu

Abstract — Re-usable learning objects (RLO) have
recently gained popularity as the primary organizational
structure in software that manipulates and renders e-
Learning content. Cisco defines a comprehensive domain
independent methodology for design and authoring of an
RLO. This paper presents a new ontology called SWOLO
that extends Cisco’s methodology for building learning
objects for Software Design. SWOLO is based on the IEEE
Software Engineering Body of Knowledge. A case study of
an existing learning object from the open courseware
initiative (OCW) demonstrating the use of this ontology is
also presented.

Index Terms — Software Engineering body of
knowledge, Learning objects, software design

I. INTRODUCTION

Re-usable learning objects (RLO) are often used as
the organizational primitives for computer programs
delivering online learning content [1][2][3]. The concept
of a “learning object” is derived from object-oriented
design. As the name implies, a learning object is
typically an abstract data type whose structure represents
the various learning components. While a learning
object can takes many forms, much like object-oriented
design, the primary motivation behind using learning
objects is to structure the software delivering learning
content in a manner such that the content can be easily
re-used in various e-learning applications.

Cisco [1] provides a widely used methodology and
framework for authoring and organizing an RLO. This
paper extends Cisco’s learning object methodology by
incorporating elements from the Software Engineering
Body of Knowledge [4] to construct a methodology that
is specifically tied to Software Design.

II. CISCO’S LEARNING OBJECT DESIGN ONTOLOGY

Fig. 1 shows a simplified ontology [5] for Cisco’s
methodology. As Fig. 1 shows, in this ontology, each
lesson is represented by an RLO. Each RLO, in turn, has
Learning Objectives. Each RLO also contains a number
of Reusable Information Objects (RIO). Each RIO
consists of Content Items, Practice Items and
Assessment Items. A Content Item typically consists of
the learning materials while Practice and Assessment
items represent quizzes and exams. A Practice item
typically represents a formative assessment where the
objective is to stimulate the learning process. There are
two types of Assessment Items; post- and pre-. Pre-
assessments formally evaluate a student’s understanding

before attempting the lesson while the post-assessment
measures their performance after the lesson.

Each RIO also has learning objectives. The Cognitive
Level of an RIO represents the desired level of
competence and identifies how the learner will
remember or use the skills and knowledge they are
acquiring. The Cognitive Level is generally based on
David Merrill’s work and more widely on Bloom’s
taxonomy [6]. Bloom’s taxonomy provides a well-
known framework outlining generic categories of levels
of learning for cognitive tasks ranging from Knowledge,
Comprehension, Application, Analysis, Synthesis and
Evaluation. Each successive level of learning requires a
higher level of understanding. For example, Knowledge
level understanding of the software engineering concept
of “coupling” may only require one to recall what
coupling is and to simply list the types of coupling (e.g.,
stamp, data, common etc.). A Synthesis level of
understanding of coupling, on the other hand, may
require students to construct a design that minimizes
particular types of coupling.

Fig. 1. Ontology for Cisco’s Learning Object Methodology

As Fig. 1 shows, from an organizational perspective,

Cisco classifies an RIO into five categories; Concepts,
Facts, Procedures, Processes and Principles. For
example, “Router” is a Concept to be explained.
Similarly, “Guidelines for Designing a Multilayer
Switched Network” is an example of a set of Principles
used for designing networks. For each type of object,
Cisco also defines a Learning Design template. A
Learning Design template describes what an explanation
for a particular type of RIO may contain. For example,
the Learning Design for a Concept RIO consists of

Introduction, Definition, Fact, Example, Non-Example
and an Analogy; Fact, Example and Analogy are
optional elements. Similarly, the Learning Design for a
Process RIO consists of Introduction, Fact, Staged
Table, Block Diagram and a Cycle chart. This means
that any RIO explaining a process will contain a section
on introduction and depending on the type of
information object, may contain the description of a fact,
a staged table, a block diagram or a cycle.

The primary premise of this paper is that rather than
using the generic organizational principles of “Concept”,
“Principle,” etc., a learning object for Software Design
should instead employ an ontology based on the
Software Engineering Body of Knowledge (SWEBOK)
[4]. The same argument can be extended to other part of
the software engineering such as requirements or
maintenance.

III. SWOLO – A LEARNING ONTOLOGY BASED ON

SWEBOK

According to SWEBOK, “Design is defined in
[IEEE610.12-90] as both “the process of defining the
architecture, components, interfaces, and other
characteristics of a system or component” and “the
result of [that] process.” (pp. 3-1). The broad
components of the design ontology articulated in
SWEBOK are as follows:

1. Design Issues – SWEBOK includes the key issues

in design to be Concurrency, Control and handling
of events, distribution of components, Errors and
exception handling, Interaction and presentation and
Data persistence.

2. Enabling Techniques - These principles are
common to all software engineering techniques.
SWEBOK defines enabling techniques to be
Abstraction, Coupling and Cohesion,
Decomposition and Modularization,
Encapsulation/Information hiding, Separation of
Interface and Implementation, and Sufficiency,
Completeness and Primitiveness.

3. Software Design Strategies - Design strategies
include Function-Oriented structured Design,
Object-oriented Design, Data-structured-design,
Component-based Design and others.

4. Software Design Notations - Software design
notations often involve using different types of
representations. Some examples from SWBOK
include ADLs, class and object diagrams,
component diagrams, CRCs, deployment diagrams,
ER-Diagrams, IDLS, Jackson’s Methodology and
structural charts. The dynamic representations
include activity diagrams, collaboration diagrams,
data-flow diagrams, state diagrams, sequence
diagrams, formal specification languages and
pseudo-code and PDLs.

5. Software Structure and Architecture – is a
description of the sub-systems and components of
the system. According to SWEBOK, this also

includes Architectural structures and viewpoints,
Architectural styles, Design patterns and
frameworks.

6. Software Design Quality Analysis and
Evaluation – includes software quality descriptions
like quality attributes, quality analysis and
evaluation techniques (including reviews,
simulations and prototyping), and measures like
function-oriented and object-oriented measures.

SWOLO (Software Engineering Ontology for
Learning Objects) is based on the design ontology
implicit in SWEBOK. SWOLO adds learning design
components specific to software engineering to each of
the SWEBOK concepts to arrive a significantly different
ontology than Cisco’s.

The main components of SWOLO are shown next by
reverse engineering the structure underlying an existing
“lesson” or a learning object. The purpose of the case
study is to show that SWOLO provides a natural and a
better representation for organizing software that
manipulates and delivers learning for Software Design.

IV. CASE STUDY

This case study uses the “lecture 2” module in
the“6.170 Laboratory in Software Engineering” (2001
version) course from MIT’s open course initiative [7].
This module is available is a PDF file on the OCW
website. This randomly selected module was analyzed to
determine how well the SWOLO ontology fits the
Software Design concepts being explained.

A. Learning objectives

This module identifies its learning objectives to
“introduce some notions for talking about parts and how
they relate to each other” and “identifying the problem
of coupling and showing how coupling can be reduced.”
The objectives for this learning object in SWOLO are
show in Fig 2. For example, LOB1 represents the first
learning objective and this learning objective was first
mentioned on line 2 in the PDF file of the module.

Fig. 2. Instances of Learning Objectives for the sample module
in SWOLO

The rest of the module introduces a number of RIO’s

related to these learning objectives.

B. Enabling Techniques

The module explains the two common software
engineering enabling techniques of Decomposition and
Decoupling.

Fig. 3. Instances of Enabling Technique RIO’s in SWOLO

As Fig. 3 shows, the module contains two instances of

the Enabling Technique RIO. The first instance (ET1) is
introduced early on (line 17) while the second one (ET2)
is introduced much later (line 113) in the module. In
SWOLO, an Enabling Technique has four facets of
Learning Design; Principle, Rationale, Benefits and an
Argument. For example, the Principle behind the
Decomposition RIO shown in Fig. 4., is to break up a
program into a collection of parts. The Rationale in this
particular RIO is “correctness” and “stability”. The
Benefits are division of labor, reuse, modular analysis
and localized change. Finally, the Argument is provided
using Dijkstra’s N parts example and Simon’s
description of the two clock makers.

Fig. 4. Decomposition RIO as an instance of Enabling
Technique in SWOLO

C. Design Strategy

The module also discusses the difference between top-
down and parallel design strategies. As Fig. 5 shows,
this particular module includes two instances of the
Design Strategy RIO; Top-Down Design and Parallel-
Design.
In SWOLO, the Learning Design for Design Strategy is

specified by a Process, Limitations and an Example.
Fig. 6 shows one such RIO abstracted from the module.
The RIO about Top-Down design clearly incorporates
the process of design itself and its limitations. In
addition, splitting the software design for a Browser into
ReadCommand, GetPage and DisplayPage is provided
as an example of Top-Down design.

Fig. 5. Two instances of the Design Strategy RIO’s in SWOLO

Fig. 6. An Instance of the Top-Down Design RIO in SWOLO

.

D. Design Notation

As Fig. 7 shows, the module discusses two instances
of Design Notation; Uses Diagrams and Dependency
diagrams. In SWOLO, the learning design for a design
notation has a Definition, Uses, Limitations and an
Example. A Uses Diagram can be Tree or Layered.

Fig. 7. Various instances of the Design Notation RIO in
SWOLO

Fig. 8 shows various instances of the Design notation

RIO. As Fig. 8 shows, Uses Diagram is defined to
capture uses relationship between parts of a software
design. This type of diagram can be used for reasoning,
reuse and to determine the construction order in case of
a change. A limitation of this type of a diagram is an
explosion due to the transitive nature of the uses
relationship. Finally, an example is provided to
illustrate this particular type of design notation.

Fig. 8. Uses Diagram RIO as an instance of the Design
Notation RIO in SWOLO

E. Software Structures and Architectures

As Fig. 9 shows, Decoupling Technique RIO is an
instance of the Software Structures and Architectures
(SSA). As Fig. 10 shows, in SWOLO, the learning
design of an SSA RIO describes a common Solution to a
common Problem in some Context. A Decoupling
Technique solves the problem of minimizing the
quantity and quality of dependencies. It does so by
bringing together aspects of systems that belong
together.

The module discusses four types of Decoupling
Techniques; Façade, Hide Representation,
Polymorphism and Callbacks. Fig. 11 shows the
Learning Design for the Façade RIO. The Façade solves
the problem of decoupling layers by introducing a new
implementation part between two parts. In addition,
layering of Protocol and Network layers in the design of
an internet browser is provided as an example of Facade.

Fig. 9. Instances of the Software Structures and Architectures
RIO in SWOLO

 F. Software Design Quality and Evaluation

As Fig. 12 shows, Software Design Quality and
Evaluation has two types of RIO; Quality Attributes and
Quality Measures. Coupling is an instance of the
Quality Attribute and Dependence is an instance of the
Quality Measure. Dependence measures Coupling.
There are two aspects of Dependence; quality and
quantity.

Fig. 10. Decoupling technique as an instance of the Software
Structures and Architectures RIO in SWOLO

Fig. 11. The Façade RIO as an instance of the Decoupling
Technique in SWOLO

Fig.12. Various instances of Design Quality Attributes and
Measures in SWOLO

V. CONCLUSION

This paper presented an extended form of Cisco’s re-
usable learning object design methodology that
incorporates a new design ontology called SWOLO.
SWOLO is based on SWEBOK. For an existing
learning module in software design, the use of the new
ontology led to a refined representation of what is being
taught and the concepts in the design ontology were
easily identified. In addition, unique Learning Design
templates based on the software design ontology rather

Figure 13. A prototype implementation of SWOLO Ontology in OWL using Protége

than generic notions of a “Concept” or a “Process” were
defined and identified. While not discussed in this paper,
SWOLO also allows one to specify the Cognitive Level
of each RIO at a finer level of detail than indicated in
SWEBOK [5] (see Appendix D in [5]).

The concepts presented here can easily be extended to
incorporate other components of the Software
Engineering Body of Knowledge (e.g., see [8]). The
ontology is currently being formalized using the Protégé
toolset [9]. Figure 13 shows a prototype implementation
showing the module discussed in this paper. Once the
formalization of the ontology has been completed, an
interesting direction may be the automatic annotation of
existing learning objects in Software Design (e.g., see
[10]).
 Finally, this approach needs to be incorporated into
existing learning object packaging and sequencing
frameworks like SCORM [11]. One key contribution of
this research is the introduction of Learning Design
components based on the Software Design ontology.
However, like Cisco’s methodology, these Learning
Design components are fairly primitive in that they
simply specify “slots” for the various components of
learning (e.g., Problem, Solution and Context). Of
particular importance is a relationship to the emerging
Learning Design Specification [12]. Therefore, rather
than static slots, the Learning Design is being extended
to specify a “grammar” of allowed learning processes
for each component of the SWEBOK Design ontology.

REFERENCES

[1] “Reusable Learning Objects Authoring Guidelines: How
to Build Modules, Lessons and Topics,” Cisco Systems,
Inc., 2003.

[2] D. Wiley, “Learning Object Design and Sequencing
Theory,” Doctoral Dissertation, Brigham Young
University, 2000.

[3] www.reusability.org
[4] A, Abran, J. W. Moore, P. Bourque, and R. Dupuis,

“Guide to the Software Engineering Body of
Knowledge,” 2004 Version, ed: IEEE Computer Society
Press, 2004.

[5] A. Gomez-Perez, O. Corcho and M. Fernandez-Lopez,
Ontological Engineering: with examples from the areas
of Knowledge Management, e-Commerce and the
Semantic Web, First Edition, Springer, 2005.

[6] B. Bloom, “Taxonomy of Educational Objectives: The
Classification of Educational Goals,” Mackay, 1956.

[7] http://ocw.mit.edu
[8] C. Wille, R. Dumke, A. Abran, J. Desharnais, ”E-

Learning Infrastructure for Software Engineering
Education: Steps in Ontology Modeling for SWEBOK,”
Proceedings of the IASTEAD International Conference
on SOFTWARE ENGINEERING, Feb. 17-19, 2004,
Innsbruck, Austria.

[9] “The Protégé Editor and Knowledge Acquisition System,”
(online: http://protege.stanford.edu/)

[10] J. Jovanovic and D. Gasvevic, ”Ontology-Based
Automatic Annotation of Learning Content,”
International Journal on Semantic Web & Information
Systems, vol. 2, no. 2, 91-119, 2006.

[11] “SCORM 2004,” Advanced Distributed Learning (online:
http://www.adlnet.org/).

[12] “Learning Design Specification,” IMS Global Learning
Consortium, Inc. (online: http://www.imsglobal.org/
learningdesign/index.htm

