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Abstract  — This paper presents a neural network 
technique for the estimation of the synchronizing and 
damping torque coefficients using Adaline. The proposed 
technique is based on estimating the torque coefficients of a 
synchronous machine from the time responses of the rotor 
angle, rotor speed, and electromagnetic torque. The 
performance of the Adaline is compared with Kalman 
filter and least-square error techniques. The Adaline offers 
several advantages including significant reduction in 
computing time, storage, and computational complexity. 
The simulation results over a wide range of operating 
conditions show that the Adaline can be used as efficient 
tool for either online assessment of small-signal stability. 

Index Terms  — Adaline, Kalman Filter, Least-Square 
Stability, Synchronizing and Damping Torques. 

I. INTRODUCTION 

Small-signal stability analysis is concerned with the 
behavior of power systems under small perturbations. Its 
main objective is to predict the low-frequency 
electromechanical oscillations resulting from poorly 
damped rotor oscillations. The most critical types of 
these oscillations are the local-mode and interarea-mode 
oscillations [1-4]. The former occurs between one 
machine and the rest of the system, while the later 
occurs between interconnected machines. The study of 
these oscillations is very important to power system 
planning, operation, and control. The stability of these 
oscillations is a vital concern and essential for secure 
power system operation.  

It is known that operating conditions change with time 
in real-time situations. These operating conditions affect 
the stability of the synchronous machine. Therefore, a 
small-signal stability analysis must be repeatedly 
conducted in system operation and control to provide 
estimates of stability indices on basis of the given data 
obtained by either measurements or computer 
simulation, and provide new estimates as new data are 
received. In terms of the synchronizing and damping 
torque coefficients, Ks and Kd respectively, both 
coefficients must be positive for a stable operation of 
the machine. This paper is concerned in small-signal 
stability assessment of local-mode oscillations. 
Traditionally, stability assessment of local-mode 
oscillations is carried out in frequency domain using 
modal analysis. However, it requires significantly large 
computational efforts, and therefore it is not suitable for 

online application. Alternative method based on 
electromagnetic torque deviation has been developed. 
Torque deviation can be decomposed into synchronizing 
and damping torques [5-7]. The synchronizing torque is 
responsible for restoring the rotor angle excursion. The 
damping torque damps out the speed deviations. The 
synchronizing and damping torques are usually 
expressed in terms of the torque coefficients Ks and Kd. 
These coefficients can be calculated repeatedly and this 
makes it suitable for online stability assessment. A least 
square error (LSE) minimization technique to compute 
Ks and Kd has been applied [7-9] The LSE technique 
requires the time responses of the changes in rotor angle 
∆δ(t), rotor speed ∆ω(t), and electromagnetic torque 
∆Te(t). The LSE static estimation technique is time 
consuming. It requires monitoring the entire period of 
oscillation. An adaptive Kalman filter (KF) has been 
utilized to estimate Ks and Kd repeatedly to achieve less 
computational time [10]. However, its computational 
burden makes it unsuitable for online application. 
Artificial neural network (ANN) based technique was 
proposed for online estimation of the synchronizing and 
damping torque coefficients Ks and Kd [11]. A static 
back propagation neural network (BPNN) has been used 
to associate the real and reactive power (P-Q) patterns 
with Ks and Kd. Although, the BPNN has very good 
learning ability, but it suffers from some drawbacks 
such as long offline training and the difficulty in 
determining the appropriate number of hidden layers 
and hidden neurons. Genetic algorithm (GA) and 
particle Swarm optimization (PSO) techniques have also 
been proposed for optimal estimation of Ks and Kd 
[12,13]. However, these techniques are not suitable for 
online application. 
This paper presents a new technique for fast online 
estimation of Ks and Kd using a single adaptive linear 
neuron (Adaline). The technique is based on estimating 
Ks and Kd from online measurements of ∆δ(t), ∆ω (t), 
and ∆Te(t). The Adaline algorithm is characterized by 
simple calculations, which lead to a fast execution 
processing time of the algorithm, a property, which is 
essential for online application. Time-domain 
simulations are conducted over wide range of P-Q 
loading conditions using MATLAB. The performance 
of the Adaline is compared with LSE and KF 
techniques. 



II. POWER SYSTEM MODEL 

In this work, the proposed method has been tested on 
a system comprising a single machine connected to 
infinite bus power system through a transmission line. 
The synchronous machine is equipped with an automatic 
voltage regulator (AVR) and IEEE ST1A static exciter. 
Customarily, for small-signal stability analysis, a fourth-
order model is considered for the synchronous 
generator. The nonlinear equations describing the 
dynamic behavior of a synchronous generator connected 
to an infinite bus through an external reactance are 
given in Appendix A. The system parameters are given 
in Appendix B. The SMIBS model is linearized at a 
particular operating point to obtain the linearized power 
system model. Figure 1 shows the well-known Phillips-
Hefferon block diagram of linearized model of the 
SMIBS, relating the pertinent variables such as 
electrical torque, rotor speed, rotor angle, terminal 
voltage, and field voltage [4]. 
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Fig. 1. Block-diagram of Phillips-Hefferon model. 
 

From the transfer function block diagram the 
following state-space form is developed. 
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 The system matrix A is a function of the system 
parameters, which depends on the operating conditions. 
The perturbation matrix B depends on the system 
parameters only. The perturbation signal U is either ∆Tm 
or ∆Vref. The output matrix C relates the desired output 
signals vector Y to the state variables vector X. 

The interaction among these variables is expressed in 
terms of the six constants K1-K6. These constants with 
the exception of K3, which is only a function of the ratio 
of impedance, are function of the operating real and 
reactive loading as well as the excitation levels in the 
generator. Calculations of the K1-K6 parameters and 
variables of the SMIBS are illustrated in Appendix C. 

III. LSE BASED ESTIMATION OF Ks AND Kd 

The dynamic response of a single machine connected 
to an infinite bus comprises various modes of 
oscillations. These modes of oscillations can be 
classified into, field and rotor circuits modes and low-
frequency electromechanical modes. The oscillations of 
the electromagnetic torque and, consequently, the rotor 
oscillations are dominated by the low-frequency 
electromechanical modes, λi = σi ± jωi. 

Various methods have been proposed to break the 
electromagnetic torque variations into two components; 
the synchronizing torque component is in phase and 
proportional with ∆δ(t), and the damping torque is in 
phase and proportional with ∆ω (t) [5]. Accordingly, the 
estimated torque can be written as  

 
 )()()(ˆ tKtKtT dse ω∆δ∆∆ +=          (3) 

 
For the reader convenience, the method of calculating 

the torque coefficients Ks and Kd using LSE technique is 
summarized. Following a small disturbance, the time 
responses of ∆δ(t), ∆ω(t), and ∆Te(t), which can be 
obtained from either off-line simulation or on-line 
measurements, are recorded. The LSE technique is then 
used to minimize the sum of the square of the 
differences between the electric torque ∆Te(t) and the 
estimated torque )(ˆ tTe∆ . The error at time tk is defined 
as 

)(ˆ)()( kekek tTtTtE ∆∆ −=   (4) 
 

The torque coefficients Ks and Kd are calculated to 
minimize the sum of the error squared over  the entire 
interval of oscillation T, as given in (4), where, T = N∆T 
( N is the number of samples and ∆T is the sampling 
period). In matrix notation, the above problem can be 
described by over-determined discrete system of linear 
equations as follows 
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where [ ])()( kk ω∆δ∆=A , and x=[ Ks  Kd]T.  The 
estimated vector x can be calculated using the left 
pseudo inverse of matrix A. Solving (6) gives the values 
of Ks and Kd for the corresponding operating point 

 
   x = A†·∆Te   (6) 

IV. ADALINE BASED ESTIMATION OF Ks AND Kd 

The Adaline is introduced in [14] as a powerful 
harmonics tracking technique. It produces a linear 
combination of its input vector X(k) = [x1, x2, …, xn] at 
time k. After, the input vector is multiplied by the 
weight vector W(k) = [w1, w2, …, wn], the weight inputs 
are combined to produce the linear output 

)(.)()(ˆ kXkWky T= . The weight vector is adjusted by 
an adaptation rule so that the output from the Adaline 
algorithm )(ˆ ky  is close to the desired value )(ky . The 
least mean square (LMS) algorithm, known as the 
modified Widrow-Hoff delta rule, is usually used as the 
adaptation rule. This rule is given by 
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where )(ˆ)()( ky-kyke =  is the prediction error at time 
k, )(ˆ ky  is the estimated signal magnitude, and α is 
the learning parameter (reduction factor), and λ is a 
parameter to be suitably chosen to avoid division by 
zero. The sgn function is given by 
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Perfect training is attained when the error is brought 

to zero. The numerical values of α and λ greatly affects 
the performance of the estimation, which is 
demonstrated in the simulation. 

 

V. ADALINE TRAINING 

The Adaline algorithm is utilized in this study to 
approximate the torque deviation )(ˆ kTe∆  as a linear 
combination of the synchronizing torque Ks∆δ(k) and 
the damping torque Kd∆ω(k) [5,7]: 
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Figure 2 shows the block diagram of the Adaline 
based estimator of Ks and Kd, where ∆δ(k) and ∆ω(k) are 
given as inputs to the single neuron, )(ˆ kTe∆  is the 
output of the Adaline and )(kTe∆  is desired output 
torque developed by the SMIBS.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Adaline estimator of Ks and Kd of a SMIBS. 

VI. SIMULATION RESULTS 

In this study, performance evaluation of the Adaline 
for the estimation of Ks and Kd is compared with LSE 
and KF estimation techniques. The evaluation is carried 
out by conducting several offline simulation cases on 
the linearized model of the SMIBS. Either the state-
space model or the Phillips-Hefferon block diagram 
implemented in SIMULINK can be used for offline 
simulation. The system input is a 0.1 pu mechanical 
torque pulse (∆Tm) for 10 ms. The system output vector 
comprises the rotor speed, rotor angle, and 
electromagnetic torque. A sampling rate of 100 samples 
per second, over a window size of 10 seconds, is set for 
all simulation cases. Starting with zero initial weighs 
W(k), the rotor angle ∆δ(k) and rotor speed ∆ω(k) are 
fed to the Adaline as input signals, whereas the 
developed torque ∆Te(k) is introduced to the Adaline as 
the desired signal. The output of the Adaline is given as  

)()()()()(ˆ
21 kkwkδkwkTe ω∆∆∆ += . 

Figures 3 and 4 show the performance of the Adaline 
and KF estimations in comparison with LSE estimation. 
A fast convergence and accurate estimation of Ks and  
Kd by both techniques are obvious. Kalman filter gives 
faster convergence and rigid tracking without overshoot 
compared to the Adaline. However, the light 
computational burden of the Adaline algorithm makes 
its implementation easier than KF. It is crucial to tune 
the parameters α and λ for the Adaline using trial and 
error to achieve a high online tracking accuracy of Ks 
and  Kd. The final estimated of Ks and  Kd for a stable 
and unstable operating points are given in Table 1. The 
values of α and λ are set to α =0.90 and λ =0.005.   
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Fig. 3. Adaline and KF Estimation of Ks and Kd. Vto=1.05 pu; 
Pe=0.8 pu;Qe=-0.6 pu 
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Fig. 4. Adaline and KF estimation of Ks and Kd. Vto=1.05 pu; 
Pe=0.8 pu;Qe=0.60 pu 

 
TABLE 1 

FINAL ESTIMATES OF Ks AND Kd 
Estimates of Torque Coefficients Rotor 

Mode Ki LSE KF Adaline 
Ks 1.3502 1.3502 1.3557 -0.1677± 

j7.4255 
stable 

Kd 2.9847 2.7857 2.9821 

Ks 1.2301 1.2301 1.2296 0.0720± 
j7.0756 
unstable 

Kd -1.3254 -1.3116 -1.3033 

VII. CONCLUSION 

An online adaptive technique for accurate estimation 
of the synchronizing and damping torque coefficients, 
Ks and Kd, using Adaline is presented in this paper. The 
performance of the technique has been compared with 
KF and LSE techniques. Simulation results have shown 

that Adaline technique is accurate and can be 
implemented with small computing time and storage. It 
is believed, that Adaline is a good candidate for online 
estimation of small signal stability indices. 
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APPENDIX A 

The dynamical nonlinear differential equations of the 
SMIBS are given below [4] 
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where Tm and Te are the mechanical input and electrical 
output torques of the generator, respectively; M is 
inertia constant. Efd is the field voltage; T`do is the open 
circuit field time constant; xd and x`d are the d-axis and 
transient reactances of the generator, respectively. KA  
and TA are the gain and time constant of the excitation 
system, respectively. Vref is the reference voltage. 

 
 

APPENDIX B 
 
The parameters of the synchronous generator and 
transmission line are given below [4].  
Machine Parameters (pu): 
x d = 0.973, x q = 0.550, x′d = 0.190 
M = 9.26, T′do = 7.76 s, D = 0, ωb=377 rad/s  
Exciter: 
KA = 50, TA = 0.05 s 
Transmission Line (pu) 
re = 0.0, xe = 0.40 
Nominal Operating Point (pu) 
Peo = 0.9, Qeo = 0.1, Vto = 1.05 
 
 

APPENDIX C 
 

For a SMIBS the following relationships apply with all 
the variables with subscript o are calculated at their pre-
disturbance steady-state operating values corresponding 
to the operating conditions Po, Qo, and Vto.[5]: 
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For the case re = 0, K1-K6 are calculated as follows: 
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