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Abstract — In this paper, we propose a novel fast and 

low complexity algorithm of computation for minimum-
mean-square-error (MMSE) equalizer or combiner without 
divisions. Multiplicative effect of fading channel should be 
compensated by divisions at the receiver. Therefore, 
equalizer or combiner at the receiver is derived by 
inverting the channel impulse responses. Here, the number 
of divisions equals to the number of subcarriers. For the 
next generation with high bit rate applications, these 
divisions are necessary to be computed in a very short time 
and may impact to the increasing of hardware complexities. 
The main contribution of this paper is a proposed fast 
algorithm by replacing the large number of divisions with 
multiplications and subtraction due to its lower complexity.  
We improve the performance of Newton-Raphson Method 
by a range extension so that the Newton-Raphson Method 
is applicable for MMSE computation with small number of 
iterations. Our results in Carrier Interferometry 
Orthogonal Division Multiplexing (CI/OFDM) confirm 
that with only two iterations, performance of the proposed 
algorithm can achieve the similar performance as the 
normal computation with divisions. 

Index Terms— OFDM, MC-CDMA, MMSE, Complexity, 
Combiners, Fast Algorithm, Newton-Raphson Method, 
Carrier Interferometry 

I. INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) is 
robust to the effect of frequency selective fading 
channel but weak to the Doppler spread effects [1]. One 
of the simple solutions is employing an equalizer at the 
receiver for recovering the corrupted signals. In the case 
of using spreading codes such as CDMA, MC-CDMA 
and other Spread OFDM, a combiner is playing a very 
important role at the receiver.  

All equalizers and combiners need a division 
operation because the fading channel has a 
multiplicative effect. Therefore, for recovering the 
received data, a number of divisions are required at the 
receiver.  

In comparison to other basic arithmetic operations, 
such as addition, subtraction and multiplication, the 
division is far more complex and expensive. The 
operation of division can not be computed directly by 
adding differently right-shifted terms of the input data, 
while the multiplication operation still can be done in a 
relatively straightforward way using combination of 
adders.  

In this paper, we propose a fast computation of 
equalizers or combiners by improving the performance 
of Newton-Raphson Method with a range extension to 
obtain faster computation and low complexity (only 1 or 
2 iterations). When the channel impulse response is 
obtained from the channel state information (CSI) 
module, we insert it to the mapping table (look-up table) 
of inversion to extract the initial values of combiner’s 
weight without doing any divisions.  

The result is still far from the expected value. 
Consequently, the Newton-Raphson Method is then 
employed to obtain the most nearest value. 
Unfortunately, this method needs more than 15 
iterations to obtain the performance as the divisions. 
Therefore, we propose a range extension to improve the 
performance of computation so the required iteration 
can be reduced significantly. Our results proved that 
with only 2 iterations, we can obtain the same bit-error-
rate (BER) performance as that of by computations with 
normal division.  

II. SYSTEM MODEL OF A COMBINER 

Because the weight’s value of combiners and 
equalizers is same, for the reason of simplicity; in this 
paper we use the term “combiner” for representing both 
combiners and equalizers. The result is easily can be 
adapted to all kinds of combiner or equalizer for 
example as presented in [2]. In this paper, we consider a 
receiver model of Carrier Interferometry OFDM 
(CI/OFDM) which the complexity has been reduced 
significantly by [3]–[5].  
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In CI/OFDM receiver, despreading process using 
complex conjugate of CI Code (CI*) is performed. 
Based on the channel impulse response that has been 
obtained from the channel estimation module, the 
weight computation is performed. The output weight is 
then multiplied to the received signals in each subcarrier, 
combined and finally demodulated. 

In additive white Gaussian noise (AWGN) channel, 
or flat fading channel, the optimal combiner is equal 
gain combining (EGC). However, EGC is not optimal 
strategy in frequency selective fading channel. Some 
equalizer were proposed such as orthogonal restoration 
combining (ORC), controlled equalization combining 
(CEC), threshold detection combining (TDC), and 
minimum mean square error (MMSE) combining [1-2]. 

MMSE is a sub-optimum solution that provides 
performance that is close to maximum likelihood (ML) 
method, but has lower complexity. The MMSE 
combiner (MMSEC) combines all components so that 
the minimum mean square error between received and 
desired signal is minimized. Weighting value which is 
derived from the MMSE criteria is given as  

 
 

(1) 
 
 

where k is the number of subcarriers, H(k) is channel 
impulse response (obtained from channel estimation 
method, we assume perfect channel estimation), H*(k) is 
the complex conjugate of H(k) and σ  is the variance of 
noise. Without loss of generality, in this paper, we select 
the MMSE combiner as an example of combiners for 
showing how our proposed algorithm works well. 

From (1), it is clear that the combiner requires k 
computations of divisions that is proportional to the 
number of subcarriers. Fig. 2 shows the channel 
response of a fading channel model, weight of ORC and 
MMSE with high and low noise level.  

III. PROPOSED COMPUTATION ALGORITHM 

Inspired from the idea of Joseph Raphson (1678-
1715) [6] who proposed a method which avoided the 
substitutions in Newton’s approach [7], we propose the 
algorithm of selecting the best value as an input in 
Newton-Raphson Method. The key point of our idea is 
starting Newton-Raphson Method with a better 
approximation of MMSE value by a range extension, so 
that the number of iterations can be reduced and suitable 
for high speed wireless communications system. 

The proposed algorithm consists of two parts i.e. 
look-up table with range extension and the Newton-
Raphson Method. The orientation of the proposed 
algorithm is on how simple the algorithm can be 
implemented in hardware. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Newton-Raphson Method 

Isaac Newton (1643-1727) in [7] around year 1669 
proposed a new algorithm to solve a polynomial 
equation (called Newton’s approach). To obtain an 
accurate root he used an approximation and substitution. 
While in 1690, a new step improvement was made by 
Joseph Raphson [6] which avoided the substitutions in 
Newton’s approach.  Raphson’s contribution then has 
shown a better approximation of Newton’s approach, 
which this method is then called Newton-Raphson 
Method [8].  

Newton-Raphson Method start to guess the value of 
xn+1 from the value of xn as  

 
 

(2) 
 

Carefully observing (1), the inverse of channel response 
is a division of 1/h, where h is channel response. So, a 
function that has a root of 1/h can be easily obtained as  

 
(3) 

 
 

(4) 
 
 
By inserting (3) and (4) to (2), we obtain 
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(5) 
 
 
 

        (6) 
 
Equation (6) is the final equation that we need for 

approximating the inverse channel response of channel 
h. It is clear that one division can be replaced by two 
multiplications and one subtraction, where n is the 
number of iteration.  

Comparing (1) and (6), to obtain W(k), first we set 
h=|H(k)|2+σ , then the result of xn+1 is multiplied by 
H*(k). When comparing to the ORC case, which is 
defined as 1/h, the MMSE weight need more one 
addition and one multiplication.  

 

B. Look-Up Table of the Inverse of CSI 

The look-up table is very important to obtain the 
initial value of MMSE’s weight without doing any 
divisions. Instead of this, we just do a mapping function 
from the channel response value in the register from the 
CSI value. The example of look-up table is shown in 
Table I.  

The output value was obtained from the mean of 
division of the input. As an example, with input channel 
response of 5, the output should be 1/5 = 0.2. The value 
of 0.2 is then saved as the mapped value of CSI 
inversion.  

C. Proposed Range Extension in MMSE Computation 

From Table I, it can be observed that the maximum 
value of the inverse channel response (output) is always 
1. Obviously, the mapping function in Table I is not 
good enough for obtaining better start approximation for 
the Newton-Raphson Method. The reason is that the 
range of inverse channel response is only from 0 (nearly 
0) to 1, while the true inverse channel response can be 
more than 1 (>1) when the level of noise is very low as 
described in Figs. 2(b) or 2(d). 

 
TABLE I 

LOOK-UP TABLE WITHOUT RANGE EXTENSION 

Input Register Expected 
value Output

1 0000 0001 1 1 
2 - 3 0000 001X 1/2 – 1/3 0.4 
4 -7 0000 01XX 1/4 – 1/7 0.2 

8 – 15 0000 1XXX 1/8 – 1/15 0.09 
16 – 31 0001 XXXX 1/16 – 1/31 0.05 
32 – 63 001X XXXX 1/32 – 1/63 0.02 

… … … … 
 

 
TABLE II 

LOOK-UP TABLE WITH RANGE EXTENSION 
Input Register Expected 

value 
Output

128x(1) 000 0000 0001 128 128 
128x(2–3) 000 0000 001X 128/2–128/3 51 
128x(4-7) 000 0000 01XX 128/4–128/7 26 

128x(8–15) 000 0000 1XXX 128/8–128/15 12 
128x(16–31) 000 0001 XXXX 128/16–128/31 6 
128x(32–63) 000 001X XXXX 128/32–128/63 3 
128x(64-127) 000 01XX XXXX 128/64-128/127 1.5 

128x(128-255) 000 1XXX XXXX 128/128-128/255 0.5 
128x(256-511) 001 XXXX XXXX 128/256-128/511 0.3 

128x(512-1023) 01X XXXX XXXX 128/512-128/1023 0.18
128x(1024-2047)1XX XXXX XXXX 128/1023-128/2047 0.09

… … … … 
 
 
Due to this reason, our proposal is to extent the range 

of mapping table for covering higher level of CSI 
inverse by adding one additional step before Newton-
Raphson iteration, called range extension.  

The reason of range extension can be describe below. 
Let us try by h as a channel response. Then weight value 
is  

 
(7) 

 
then we multiply h with a constant c, we have h’= h x c.  
Suppose that  
 

(8)  
 
we then get  
 

(9) 
 
so that we obtain  
 

(10) 
 
Equation (7)-(10) allow us to do a multiplication to the 
input (channel h), then (10) clarified that to obtain the 
same value we should multiply w’ with the same 
constant c. The algorithm is then described as: 

First, multiply the input with a constant value c. In 
Table II, we use constant value of c=128 (=27). With 
this value, it is easy to perform a multiplication only by 
bit shifting to the left.  

Secondly, map the input with the conversion value as 
shown in Table II.   

Third, perform Newton-Raphson Method and its 
iteration.  

Finally, multiply the results with a constant c (as in 
the first step).  
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IV. NUMERICAL RESULTS 

A. Simulation Conditions 
For analyzing the performance of the proposed 

algorithm, we use the CI/OFDM system with the 
simulation parameter as in [3], [4] and shown in Table 
III. FFT point is 128 and MMSE combiner is performed 
for combining the spread data. The channel model is 
frequency selective model of bad urban (BU) COST-
207 fading model [9]. Ts in Fig. 3 is time distance 
between two samples of channel impulse response. 

 
TABLE III 

SIMULATION CONDITIONS 
 Parameter  Value 

Modulation QPSK 
Subcarriers 128 
Oversampling  4 
GI Length 32 
Channel Coding Off 

Transmitter 

Spreading Codes  Carrier 
Interferometry 
[3], [4], [5] 

 Channel BU Cost 207 Fading Model 
Channel Estimation Perfect Receiver 
Combiner MMSE 

 
 

B. Accuracy of the Approximation 
Fig. 4 shows the weighting value of MMSE when the 

noise level is high (Eb/No=0dB). The initial value is 
obtained from Table II. Because the noise level is high, 
the inverse channel response is not high (less then 2.0). 
Values with iteration 2 are close to the ideal one. The 
result with iteration more 3 are exactly same as the 
original results. 

Fig. 5 describes the performance of Newton-Raphson 
Method when channel response has low noise level 
(Eb/N0 = 30dB). Here, our results confirm that the high 
value of MMSE’s weight (when noise level is low) can 
be obtained if the number of iterations is more than 15. 
However, with the proposed range extension, iteration 
of 2 is enough to obtain the same performance as the 
original performance by divisions. It is clear that range 
extension is required for performing high value of 
MMSE weight. Therefore, only Table II should be used 
for these approximation, because Table I is limited to 
maximum value of 1.0. We can conclude that the 
proposed range extension is very efficient to reduce the 
number of iteration in Newton-Raphson Method. 

 
C. BER Performance 

The bit-error-rate performance (BER) of MMSE 
combiner with our proposed algorithm is shown in Fig. 
6. BER performance of Newton-Raphson Method 
without range extension meet flat error rate at BER level 

of 2x10-2, while with the proposed range extension 
(iteration 1) is degraded by about only 2dB at BER level 
of 10-5. 

BER of the proposed algorithm with iteration of more 
than 2 is quietly similar to that of original MMSE 
weight computations with division. It can be concluded 
that the proposed method with iteration 1 or 2 is very 
efficient and faster for reducing the complexity of 
MMSE weight computations, especially for high bit rate 
applications. 

 
 
 
 
 
 
 

Fig. 3. Delay profile of Bad Urban COST-207 Fading Model 
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TABLE IV 
COMPUTATIONAL COMPLEXITY REDUCTION OF MMSE 

Proposed ComputationArithmetic 
Operations 

Original 
Computations

1 iteration 2 iterations
Div. 1 0 0 
Mul. 2 4 6 

Add/Sub. 1 2 3 
Error - 2dB at BER 

or 10-5 
0 

Div. = Divisions, Mul. = Multiplication, 
Add/Sub.=Addition/Subtraction 

 
 
 D. Complexity Reduction 

Table IV shows the computation of MMSE combiner 
with the proposed computation method. The increasing 
of iteration requires 2 additional multiplications and 1 
subtraction, but this computation is not “heavy” 
compared with division and capable of supporting the 
computation process in a very short time. Multiplication 
for performing range extension can be ignored because 
it is the multiplication with a constant c = 128 (27) 
which can be performed simply by bit shifting to the 
right by 7 bits. 

VII. CONCLUSIONS 

A fast algorithm for computing MMSE combiner’s 
weight without divisions has been proposed. The range 
extension is required for obtaining “smooth” values so 
that the results are very close to the expected values, so 
the process of Newton-Raphson Method requires only 2 
iterations (without degradation) or one iteration with 
very small degradation (2dB on BER level of 10-5). The 
results confirm that the proposed method is very 

efficient and faster for performing the combiner or 
equalizer’s computation by replacing divisions with 
some multiplications and subtractions. 
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