
A General Purpose Processor Based IEEE802.11a Compatible 
OFDM Receiver Design 

 
Muhammad Khurram ( Lecturer, Research Scholar, Dept of Computer & Information Systems Engg, 

NED University, Karachi, Pakistan; mkhurrum@neduet.edu.pk ); 
Prof. Dr. Shahid Hafeez Mirza (Dean(ECE), Faculty of Electrical & Computer Engg, NED University, 

Karachi, Pakistan; deanece@neduet.edu.pk ) 
 
 

Abstract - Using the processing power of multi-gigahertz 
general purpose processors (GPP) to perform radio functions 
can be a better and economical option to design a software 
defined radio (SDR) system. An efficient SDR system with 
multiple protocol support can be designed by identifying 
different blocks in the channel processing stream of different 
wireless protocols that can be mapped on GPP and field 
programmable gate arrays (FPGAs) processing platforms 
depending on throughput requirements of the corresponding 
protocol. This paper presents the ongoing research work in 
designing a novel architecture to prototype and develop 
efficient SDR systems using GPP as main digital signal 
processing (DSP) platform along with FPGAs to perform real-
time signal processing tasks that can not be handled by GPPs. 
In this research project, a software defined radio is designed 
for the physical layer of WLAN standard IEEE 802.11a 
receiver. Different sub-systems of the channel processing 
stream of IEEE 802.11a OFDM receiver are mapped on GPP of 
a PC and a PCI board containing fast ADCs to receive the 
received analog signal from the RF front-end. The software 
radio architecture discussed in this paper is a scaled down 
version of the software radio that has to be developed as the 
research project for M.Engg. by research at NED University by 
the principal author. 
 
 

I. INTRODUCTION 
 
There has been a great advancement of wireless devices 
towards SDR systems that perform digitization of RF signals 
as close to the antenna as possible. Signal processing of 
baseband and IF signals digitally in software offers 
reprgrammability, flexibility and greatly reduces cost. 
Several commercial and open-source software projects are 
under progress to develop SDR systems that run on both 
dedicated DSPs and GPPs [1][2]. Dedicated DSPs have 
been used till now for implementing SDRs, which provide 
real-time performance with less power consumption but do 
not provide the flexibility required for future networks [3].  
The software development languages for DSPs are very 
cumbersome to use and are in their infancy as they do not 
provide a suitable abstraction to underlying hardware [4]. 
This greatly increases development, testing and deployment 
time. In contrast, GPP technology has made tremendous 
advances in the recent past along with the rapid development 

of software languages. The flexibility and development tools 
of GPPs greatly outweigh the DSP technology. 
In this paper, a novel architecture is described to process the 
radio signal using general purpose processing platform and 
operating system (OS). The designer can implement the 
software radio components in familiar high level languages 
like C/C++. The designer can use common approaches of 
object oriented programming and debugging to design real-
time SDR systems. Use of general purpose processor loaded 
with general purpose OS and signal processing application 
software greatly reduces design time and increases 
flexibility. 
The system, described in this paper, focuses on the 
implementation of IEEE 802.11a WLAN OFDM receiver. 
Different subsystems of OFDM receiver are mapped onto 
GPP and FPGA depending on the processing throughput 
requirements to ensure real-time signal processing. The high 
density FPGA is mounted on the SDR front-end PCI board 
containing fast broadband ADCs/DACs and provides 
reconfigurable logic of sampling and FIFO buffering.  
 

II. SYSTEM ARHITECTURE 
 
The system architecture presented in this paper is shown in 
figure-1. Which is to first downconvert a wideband of the 
spectrum to an IF frequency and then digitize it using 
wideband A/D converter. It is important that the 
downconverted band is not just singal band but a wide band 
containing many norrow band signals. The RF signal can 
also be fed to the A/D converter if it is amplified and band 
pass filtered before feeding it into A/D converter. In this 
case, bandpass sampling technique is used so that the 
wideband signal is automatically downconverted to IF. 
Further Processing is done in digital domain. If appropriate 
sampling frequency is selected, the whole band can directly 
be converted down to baseband. Demultiplexing and 
baseband signal processing is done completely in software. 
The FPGA shown in figure-1 is used for programmable 
functions of sampling frequency selection, FIFO buffering 
and optional signal up/down conversion. All these 
parameters are software selectable and modifiable. Other 
communications functions are performed by GPP 
programmed in software. 



A. Signal Acquisition Front-end 
 
The primary bottleneck to system performance is the I/O 
throughput to the application. Existing workstation 
architectures can not provide data at a rate sufficient to 
enable software radio applications. To digitize wideband 
signals of 20 MHz or 40 MHz wide, very high sampling rate 
wideband ADCs/DACs are required and also for this 
purpose, high throughput interface is necessary to transfer 
digital samples to/from GPP in real-time. For data 
conversion, Analog Devices ADC is used for A/D 
conversion which supports 14-bit quantization at 64 MSPS. 
For D/A conversion, onboard DAC provides 14-bit 
resolution at up to 160 MSPS. These ADCs and DACs are 
interfaced with high density Vertex-II FPGA. The onboard 
Vertex-II user FPGA is programmed in VerilogHDL/VHDL 
to provide signal acquisition, buffering and processing 
function. 
For transmit and receive signal buffering, FIFO memories 
are programmed in user FPGA and are accessed by the GPP 
through PCI interface.  
 
B. I/O System 
 
The signal acquisition front-end mounted on a PCI board 
that is interfaced with the GPP through general purpose PCI 
interface. The interface FPGA, built-in on PCI board, is 
used to provide fast 32-bit PCI interface between the PCI 
bus of the host PC and the user FPGA. This interface, 
named as FIFO-PCI, supports both the programmed I/O and 
multiple DMA channels between FIFO memories 
programmed in user FPGA and the host PC. The block 
diagram of this interface is shown in figure-2. 
  
C. Reconfigurable Hardware Accelerators 
 
The key to increase processing capacity and still maintain 
flexibility is to introduce accelerators in the processor. An 
accelerator is extra hardware added to a programmable 
processor which performs a certain pre-configured task 
while the processor is free to perform other operations. 
However, every extra accelerated function will increase the 
hardware cost, so selecting the right accelerators to cover 
most processing needs over multiple standards is essential 
[5].  
 

 
III. DEALING WITH VARIALBILITY 

 
Using GPP platform with general purpose OS, brings in 
tremendous flexibility and ease of design but it also posses 
challenges to the implementation of real-time signal 
processing applications. The most important challenge is the 
variability of the execution time. In case of conventional 
DSPs, the execution time can be predicted but in GPP based 
systems with variable execution environment the real-time 
environment can only be bounded by the worst case 
performance.  
To absorb the jitter caused by variable execution times, 
FIFO memories are programmed in user FPGA as described 
in section 2.2. Multiple FIFOs are written/read using DMA 
in both transmit and receive chains to output/input samples 
from data acquisition front-end in real-time.  
 
A. Software Architecture 
 
In GPP systems, abstraction layers of OS cloud the ability to 
be fully deterministic about code execution time. Also, 
multiple layers of caches, virtual memory implementation, 
multi-tasking and competition for I/O and memory buses 
add jitter to the expected time required for a sample to travel 
from signal acquisition front-end and GPP. A hard real-time 
system imposes a hard deadline for each task, and provides a 
mechanism that the deadline is met. The software 
architecture presented in this paper is a soft real-time 
system. A soft real-time application has timing constraints 
but there is no guarantee that they will be met [6].  
In the software architecture described in this paper and 
shown in figure-3, DATA-PULL model is employed. In the 
data-pull model, the execution is driven by the data sink 
which requests the data, as it is needed by the upstream 
modules or layers. The signal processing software is a 
multithreaded application programmed in C++ and divided 
into different sub modules depending upon their data 
requirements. Each submodule or layer is executed 
independently in an independent thread. The data to be 
processed in these layers are kept in main memory queues 
present between two subsequent layers and fed to the layer 
upon its request.  
 
 
 

 
Front-end 

 
Digital  

Reprogram
mable 

hardware 

 
Software 

RF 

A/D/A           FPGA                    GPP 
 

Figure-1 

 
Host 

 
Interface 

FPGA 

 
 
 
 

 

FIFO 

DSP 
Logic 

Signal 
Acquisition 

32-bit 
PCI 

User FPGA 

A/D/A 
RF 

Frontend 

Figure-2 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

IV. IEEE802.11A RECEIVER 
 
IEEE802.11a is a wireless local area network (WLAN) 
access technology and is similar to HiperLAN/2 WLAN 
standard. It operates in the 5 GHz frequency band and 
makes use of orthogonal frequency division multiplexing 
(OFDM) to transmit the radio signal. The bit rate of 
IEEE802.11a at physical layer depends on the modulation 
type and is 6, 9, 12, 18, 24, 36, 48 or 54 MBits/sec.  
The basic idea of OFDM is to transmit high data rate 
information by dividing the data into several parallel bit 
streams, and let each one of these one of these bit streams to 
modulate a separate carrier [7]. An IEEE802.11a OFDM 
channel contains 64 subcarriers and has a channel spacing of 
20 MHz. 48 out of 64 subcarriers carry actual data, 4 are 
pilot subcarriers and rest of 12 carriers are NULL. Important 
parameters of IEEE802.11a OFDM standard is given in 
table-1 and table-2 [8]. 
In practice, the OFDM signal for the standard IEEE 802.11a 
is generated as follows: 
At the transmitter, binary input data is first scrambled using 
127-bit length scrambling sequence, generated by the 
polynomial S(x) shown below: 
 

S(x) = x7 +x4 +1 
After scrambling, data is encoded by a rate ½ convolutional 
encoder. The rate can be increased to 2/3 and ¾ using 
appropriate puncturing algorithms. The generator 
polynomial for convolutional encoding is shown below: 

 
g0 = 1338 and g1 = 1718 

 
To minimize burst errors, interleaving is applied and binary 
values are then mapped onto the constellation depending on 

the type of modulation technique used. In 802.11a, BPSK, 
QPSK, 16-QAM and 64-QAM are provided as constellation 
mapping techniques to support different data rates. Four 
pilot values are added with each 48 data values, resulting in 
a total of 52 complex values per OFDM symbol. The symbol 
is modulated onto 52 subcarriers and 12 null subcarriers by  
 
 
Data rate 
(Mbits/s) 

Modulation 
Type 

Coding 
rate 
( R ) 

Coded 
bits per 

subcarrier 
(NBPSC) 

Coded 
bits per 
symbol 
(NcBPS) 

Data 
bits per 
symbol 
(NDBPS) 

6 BPSK ½ 1 48 24 
9 BPSK ¾ 1 48 36 

12 QPSK ½ 2 96 48 
18 QPSK ¾ 2 96 72 
24 16-QAM ½ 4 192 96 
36 16-QAM ¾ 4 192 144 
48 64-QAM 2/3 6 288 192 
54 64-QAM ¾ 6 288 216 

Table-1 
Parameter Value 

NSD : Number of data subcarriers 48 
NSP : Number of pilot subcarriers 4 
NS : Number of subcarriers, total 52 (NSD + NSP) 
�F : Subcarrier frequency spacing 0.3125 MHZ (=20 

MHZ /64 ) 
TFFT : IFFT/FFT period 3.2 µs (1/�F) 
TPREAMBLE : PCLP preamble duration 16 µs (TSHORT + 

TLONG) 
TSIGNAL : Duration of the SIGNAL BPSK-

OFDM symbol 
4.0 µs (TGI + TFFT) 

TGI : GI duration 0.8 µs (TFFT /4) 
TGI2 : Training symbol GI duration 1.6 µs (TFFT /2) 
TSYM : Symbol interval 4 µs (TGI + TFFT) 
TSHORT : Short training sequence duration 8 µs (10  X TFFT /4) 
TLONG : Long training sequence duration 8 µs (TGI2 + 2 X TFFT) 

Table-2 
 
applying 64-point IFFT.  The output is converted to serial 
and a 16-bit cyclic extension is added to make the system 
robust to multipath propagation. Windowing is applied after 
to get a narrower output spectrum. Using an IQ modulator, 
the signal is converted to analog, which is upconverted to 
the 5 GHz band, amplified, and transmitted through the 
antenna. 
The receiver performs the reverse operations of the 
transmitter, with additional training tasks. In the first step, 
the receiver has to estimate frequency offset and symbol 
timing, using special training symbols in the preamble. After 
removing the cyclic extension, the signal can be applied to a  

Layer-1 

Layer-2 

 

Layer-3 

 

 

 

Layer-n 

 
 
 
 
 
 
 
 
OS 
 
 
 
 

Signal  acquisition 
front-end 

Figure-3 

Queues in MM 
 



Binary Data 
out 

RF 
Input 

RF 
Fronten
d/ADC 

Timing / 
Frequency 
Synchroniz

e 

Cyclic 
Extension 
Removal 

Serial to 
Parallel 

 
FFT 

Symbol 
Demapping 

De-
interlaeavi

ng 

 

Parallel 
to Serial 

FEC 
Decoder

/ 
descram

bler 

Channel 
Estimation 

/ 
Correction 

Figure-4 

General Purpose 
Processor  

 

RF A/D 

Framing and Sync 

 

FFT 

 

Descrambling 

 

Demodulation 

 

Viterbi Decoder (not 
implemented) 

Higher layers 

 

Reconfigurable 
hardware 

 

Figure-5 

 
Fast Fourier transform block to recover the 52 information 
subcarriers. The training symbols and the pilot subcarriers 
are used to correct for the channel response as well as 
remaining phase drift. The constellation is then demapped 
into binary values, and finally a Viterbi decoder and 
descrambler decodes the information bits. 
 

V. RECEIVER IMPLEMENTATION 
 
The modules, mapped onto the general purpose processor 
and reconfigurable user FPGA, are sketched in figure-5. The 
complex input samples are downsampled, interpolated and 
then propagated to preamble detection, framing and 
frequency synchronization. This operation takes place in 
user FPGA as shown in figure-5. After frame detection and 
synchronization, complex samples are placed into receive 
FIFO buffers as described in section-2.2. When first FIFO 
buffer gets completely filled an interrupt is sent to the GPP 
to read the buffer using DMA. Further processing is done by 
the GPP programmed in C++. The C++ application is a 
multithreaded application as described in section-3.1.  
 
A. Hardware Implementation 
 
The PCI board structure is described in section-2.1. The user 
FPGA is programmed in verilogHDL using Xilinx System 
Generator software tool. Using this tool, the system has been 
tested using hardware co-simulation feature with Matlab. 
The user FPGA is programmed to provide A/D interface, 
FIFO-PCI and framing and synchronization modules. The 
FIFO-PCI I/O system full-duplex performance is shown in 
figure-6. This interface can support up to 512 MBPS in one 
direction; either transmit or receive. The performance of the 
interface is tested on Windows2000 platform. This can be 
increased if a less heavier OS, in terms of processing 
requirements, is used.  
 
B. Software Implementation 
 
An implementation of software architecture was developed 
on windows 2000 using C++ multithreading programming 
technique. While implementing different layers of software 

radio using GPP, as shown in figure-3, the designer can 
decide to implement a CPU bound synchronous layer or I/O 
bound asynchronous layer [3]. All the layers mapped on 
GPP are synchronous, only the DMA interface is I/O bound 
and a separate thread is instantiated to transfer data through 
PCI bus to main memory.  
 
 
 
 
 
 
 
 
 
 
 
 

VI. CONCLUSION 
 
A software defined radio system architecture using GPP as 
main signal processing platform is designed and tested by 
implementing IEEE 802.11a WLAN receiver. This paper 
has demonstrated the flexibility and capability of GPP based 
system to develop software radio solutions for next 
generation wireless protocols. Although, GPP based 

   Figure-6 



workstations running on general purpose operating systems 
are high power consuming machines but they can provide 
the ultimate flexibility and processing capability for software 
defined solutions for those systems where power 
consumption is not a sensitive parameter to look for. Like, 
basestations, automobiles, stationary computer networks and 
many more. The ability of GPP based systems to upgrade 
via software only will open up many opportunities for next 
generation of wireless systems.  

 
10. REFERENCES 

 
[1] J. Chapin, V. Bose, “The Vanu Software Radio System”, 

2002 Software Defined Radio Technical Conference, San 
Diego, November 2002 

[2] Peter G. Cook, Wayne Bonser, “Architectural Overview of 
SPEAKeasy System”, IEEE Journal on Selected Areas in 
Communications, Vol 17, No. 4, April 1999 

[3] P Mackenzie, L Doyle, KE Nolan, D O'Mahony, “an 
Architecture for the Development of Software Radios on 
General Purpose Processors”, Proceedings of the Irish Signals 
and Systems Conference, ISSC June 2002 

[4] Eyre, Jennifer, “The Digital Signal Processor Derby”, IEEE 
Spectrum, Vol 38, No. 6, June 2001 

[5] Anders Nilsson, Eric Tell, Dake Liu, “An Accelerator 
Architecture for Programmable Multi-Standard Baseband 
Processors”, Proceedings of Wireless Networks and Emerging 
Technologies, WNET2004, July 2004 

[6] Vanu Bose, Michael Ismert, Matt Welborn, and John Guttag, 
“Virtual Radios”, IEEE Journal on Selected Areas in 
Communications, Vol. 17, No. 4, April 1999 

[7] Yiyan Wu, William Y. Zou, “Orthogonal Frequency Division 
Multiplexing: A Multi-Carrier Modulation Scheme”, IEEE 
Transactions on Consumer Electronics, Vol. 41, No. 3, 
August 1995 

[8] IEEE Std 802.11a/D7.0-1999, “Part11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications: High Speed Physical Layer in the GHz Band.” 

[9] Roel Schiphorst, 1Fokke Hoeksema, 2Vincent 
Arkesteijn, 1Kees Slump, 2Eric Klumperink and 2Bram 
Nauta, “A GPP Based Software Defined Radio Front-end for 
WLAN Standards”, Preceedings of IEEE Benelux Signal 
Processing Symposium, 2004 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 


