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Abstract — The objective of this paper is to simulate 
numerically the wireless channel and the V-BLAST 
architecture to compare the performance of these systems 
using linear nulling and symbol cancellation along linear 
nulling for a zero forcing (ZF) and a minimum mean-
squared error (MMSE) receiver. We will also compare 
the performance of V-BLAST and the Successive 
Cancellation Receiver (SUC) against the QR 
decomposition as an approximation of V-BLAST, trying 
to develop a less calculation intensive algorithm. The 
simulation will compute the frame error rate in both 
cases for different values of SNR in a flat fading channel. 
The transmitted symbols will be modulated using a 
QPSK constellation with 4 transmitters and 6 receivers. 
The results will be compared to those measured in the 
laboratory of the optimum V-BLAST. 

Index Terms — Layered Space-time Codes, V-Blast, 
QR Decomposition, Sorted QR Decomposition. 

I. INTRODUCTION 

Applying multiple antennas at both the transmitter and 
receiver side can greatly improve the capacity and 
throughput of a wireless communication link in flat-
fading [1], as well as frequency-selective fading 
channels [2], especially when the environment 
provides rich scattering. The Vertical Bell Laboratories 
Layered Space-Time (V-BLAST) architecture was 
introduced as a simplified version of the diagonal 
BLAST (D-BLAST), which was first introduced by 
[1]. Layered space-time codes have been designed to 
exploit the capacity advantage of multiple antenna 
systems in Rayleigh fading environments. In this 
paper, we are comparing different codes based on the 
Layered Space-Time techniques: Successive 
Cancellation (SUC), Vertical BLAST (V-BLAST), QR 
Decomposition and Sorted QR decomposition. These 
kinds of Space-Time codes have been introduced to 
use space as a second dimension of coding. Layered 
Space-Time codes are special kinds of Space-Time 
codes with the advantage of a feasible decoding 
complexity [1]. The mathematical model for all 
schemes presented here consists of a single data stream 
that is demultiplexed into Tn  substreams and each 
substream is then modulated into symbols and fed to 
its respective transmitter. The Tn  transmitters operate 
co-channel with synchronized symbol timing. Each 
transmitter is itself an ordinary QPSK transmitter.  We 
assume that transmissions are organized into bursts of 

L  symbols. The power launched by each transmitter is 
proportional to Tn1  so that the total radiated power is 
constant and independent of Tn . The Rn  receivers are, 
individually, conventional QPSK receivers. These 
receivers also operate co-channel, each receiving 
signals radiated from all Tn  transmit antennas. For 
simplicity in the sequel, flat fading is assumed and the 
matrix channel transfer function H , is zero-mean, 
white Gaussian distributed. 

The organization of the paper is as follows. In 
section 2, the system description and notations are 
introduced. In section 3, the capacity of a multi-input 
multi-output system is given. In order to simplify the 
derivation, the linear ZF and MMSE with the detection 
of BLAST systems using the QR decomposition of the 
channel matrix are investigated in sections 4 and 5, 
respectively. The simulation results are introduced in 
section 6, while we conclude in section 7. 

II. SYSTEM DESCRIPTION 

In what follows, we take a discrete-time baseband 
view of the detection process for a single transmitted 
vector symbol, assuming symbol-synchronous receiver 
sampling and ideal timing. Let T

nT
aa ][ 1"=a  denote 

the vector of transmit symbols, then the corresponding 
received Rn -vector is: 

naHr +⋅=                             (1) 
where n  is a noise vector with components drawn 

from i.i.d. wide-sense stationary processes with 
variance 0N . We consider a flat fading multiple–input 
multiple–output (MIMO) channel as shown in Figure 
1, which describes a system with Tn  transmit antennas 
and Rn  receive antennas. The tap gain from transmit 
antenna j  to receive antenna i  at time k  is denoted 

by k
jih , . Later, we will drop the time index k  if the 

taps are assumed to be constant over the time period 
considered. The antennas are separated far enough to 
ensure independently fading channels from each 
transmit to each receive antenna. Therefore, the 
channel taps are modeled as independent complex 
Gaussian random variables of equal variance and 
satisfy 1}|{| 2

, =jihE . The symbol transmitted from 



 

antenna j  is denoted ja . The mean energy per 

symbol ja  is given by 

}{ jjj aaEE ⋅=                                   (2) 
whereas 
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                               (3) 

is the total energy per use of the MIMO channel. A 
channel use is defined as the simultaneous 
transmission of a symbol ja  from all transmit 
antennas Tnj ,,1"= . The observed value at receive 
antenna i  is given by  
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Figure 1: Flat fading MIMO channel model. 

The additive noise in  at each receive antenna i  is 
assumed to be white and Gaussian with spectral power 
density 0N . Now, the expected Signal-to-Noise Ratio 
(SNR) per receiving antenna, i.e. the SNR for each 
component of r , can be found and is equal to: 

0N
Es=ρ                           (5) 

where sE  stands for the signal power per receive 
antenna and 0N  denotes the noise power per receive 
antenna. 

IV. LINEAR DETECTION 

The V-BLAST detection algorithm [3] bases on the 
linear zero-forcing solution, but detects the signals one 
after another and not in parallel. In order to achieve the 
best performance, it is optimal to choose always the 
layer with the largest signal-to-noise-ratio (SNR), or 
equivalently with the smallest estimation error. The 
adaptation to the MMSE criterion was presented in 
[11], where the optimal sequence maximizes the 
signal-to-interference-and- noise ratio (SINR) in each 
detection step. The main drawback of the V-BLAST 
detection algorithms lies in the computational 
complexity, as it requires multiple calculations of the 
pseudo-inverse of the channel matrix [3]. By 
introducing an extended system model, we show the 
similarity of both criteria. This analogy will play a key 

role for the introduction of the MMSE based QR 
detection algorithm. 

A. Zero-Forcing Detector (ZF) 

In a linear detector, the receive signal vector a  is 
multiplied with a filter matrix G , followed by a 
parallel decision on all layers. Zero-forcing means that 
the mutual interference between the layers shall be 
perfectly suppressed. This is accomplished by the 
Moore-Penrose pseudo-inverse (denoted by +⋅)( ) of 
the channel matrix [5] 

HH HH)(HHG 1−+ ==ZF ,            (6) 
where we assumed that H  has full column rank. The 
decision step consists of mapping each element of the 
filter output vector 

nHH)(HarHrGa HH 1
ZFZF

~ −+ +===      (7) 
onto an element of the symbol alphabet by a minimum 
distance quantization. The estimation errors of the 
different layers correspond to the main diagonal 
elements of the error covariance matrix 

{ } 12
ZFZFZF

~~ −=−−= H)(Ha)aa)(a(EΦ H
n

H σ    (8) 
which equals the covariance matrix of the noise after 
the receive filter. It is obvious that small eigenvalues 
of HHH  will lead to large errors due to noise 
amplification. This effect is especially observed in 
systems with equal number of transmit and receive 
antennas. In fact, using a result from random matrix 
theory [6], it can be shown that in the large system 
limit for ∞→= RT nn  the noise amplification tends to 
infinity almost surely. In order to improve the 
performance, the noise term can be included in the 
design of the filter matrix G . This is done by the 
MMSE detection scheme, where the filter represents a 
trade-off between noise amplification and interference 
suppression. 

B. MMSE Detector 

The MMSE detector minimizes the mean squared error 
(MSE) between the actually transmitted symbols and 
the output of the linear detector and leads to the filter 
matrix [5] 

H
nn

H
T

σ H)IH(HG 12
MMSE

−+=            (9) 
The resulting filter output is given by 

rH)IH(HrGa MMSE
H

nn
H

T
σ 12

MMSE
~ −+== .  (10) 

The estimation errors of the different layers correspond 
to the main diagonal elements of the error covariance 
matrix 

H
nn

H
T

σ H)IH(HΦ 12
MMSE

−+=            (11) 
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H
n T

σσ 122 −+= . 
With the definition of a TRT nnn ×+ )(  extended 
channel matrix H  and a 1)( ×+ RT nn  extended 
receive vector r  through  
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the output of the MMSE filter given by (10) can be 
rewritten as 

rHrH)HH(a +− == HH 1
MMSE

~ .       (13) 
Furthermore, the error covariance matrix (11) becomes 

H
n

H
n σσ ++− == HH)HH(Φ 212

MMSE .    (14) 
Comparing (13) and (14) to the corresponding 
expression for linear zero-forcing detector in (7) and 
(8), the only difference is that the channel matrix H  
has been replaced by H .  

V. DESCRIPTION OF THE CODES 

A. Successive Cancellation (SUC) 

The key idea in the successive canceling technique is 
layer peeling where the symbol streams are 
successively decoded and stripped away layer by layer 
(Layered Space-Time).  

For detecting signal i , we define: += HG1  for a ZF 

receiver or H
n
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ρ
 for an 

MMSE receiver, where +H  represents the pseudo-
inverse of matrix H . Letting i  go from 1 to Tn , we 
extract the symbol from each thi  stream: 

iiz rg ⋅=                          (15) 
where ig  is the thi  row of the ZF/MMSE receiver 

1G . Tn  is the number of transmit antennas and ρ  is 
the signal to noise ratio 0b NE . The obtained z  is 
then sliced to obtain the received symbol ia . Assume 
that the decision on ia  is correct, remodulate to get ia  
and subtract its contribution from the received signal 

ir . The reduced signal model is: 
naHahrr +⋅=⋅−= +++ 111 iiiiii        (16) 

where 1+ir  is the 1×Rn  received vector with the 
contribution of ia  removed, ih  is the thi  column of 
H , and 1+iH  is a reduced channel matrix of 
dimension ))1(( +−× inn TR  with: 

[ ]
Tnii hhH "11 ++ =                (17) 

and 1+ia  is a reduced signal vector of dimension 
1))1(( ×+− inT  given by: 

[ ]Tnii T
aa "11 ++ =a                     (18) 

Recalculate 1+iG , using the expressions given for 1G , 
now using 1+iH , for either ZF or MMSE receivers. 

B. V-BLAST (Ordered Successive Cancellation) 

The V-BLAST technique, also called Ordered 
Successive Cancellation (OSUC), is a slightly better 

approach than SUC. The principle behind OSUC is 
that at the beginning of each stage, the stream with the 
highest SNR is selected for peeling. This improves the 
quality of the decision and has been shown to be 
optimal for the SUC approach. The SUC algorithm 
requires only a small change, wherein, the SNR of the 
remaining streams are calculated at each stage and the 
stream with the highest SNR is selected for decoding.  

For detecting signal i , we define 1G  as before, for 
either the ZF or the MMSE receiver. Before iterating 
we must first define the vector k , which will record 
the proper ordering of decoding. 

2
1 minarg jj

k g=                   (19) 

where the notation ig  is used to denote the thj  
column of matrix 1G . Letting i  go from 1 to Tn , we 
extract the symbol from each thik  stream: 

iki
z rg ⋅=                           (20) 

where 
ikg  is the thik  row of the ZF/MMSE receiver 

1G , Tn  is the number of transmit antennas and ρ  is 
the signal to noise ratio 0b NE . The obtained z  is 
then sliced to obtain the received symbol 

ikâ . Assume 

that the decision on 
ikâ  is correct, remodulate to get 

ika  and subtract its contribution from the received 

signal ir . The reduced signal model is: 
naHhrr +⋅=⋅−= +++ 111 ˆ iikkii ii

a    (21) 

where 1i+r  is the 1×Rn  received vector with the 
contribution of 

ika  removed, 
ikh  is the thik  column 

of H , and 1i+H  is a reduced channel matrix of 
dimension ))1(( +−× inn TR  with: 

[ ]
}{

1
1 ikkj

ji
"∉

+ = hH                      (22) 

and 1i+a  is a reduced signal vector of dimension 
1))1(( ×+− inT  given by: 

[ ]
}{

1
1 ikkj

T
ji
"∉

+ = aa                         (23) 

Recalculate 1i+G , using the expressions given for 1G , 
now using 1i+H , for either ZF or MMSE receivers. 
Calculate the new value 1i+k , for the next iteration: 

2

}{1
1

minarg jkkji
i

k g
"∉+ =                   (24) 

where jg  denotes now the thj  column of 1i+G , 
calculated in the previous step. 

This algorithm uses the sequence ik  to determine 
the optimal ordering, compute the ZF or MMSE vector 

ig , the decision statistic and the estimated component 
of a . Then cancellation of the detected component is 
done, and the new 1i+G  is calculated for the next 



 

iteration. This new matrix is calculated using a reduced 
version of H , where columns i1 kk …  are eliminated. 

C. Zero-Forcing BLAST with QR Decomposition  

It was shown (e.g. [8], [9]) that the BLAST algorithm 
can be restated in terms of the QR decomposition of 
the channel matrix H, i.e. 

QRH = ,                            (25) 
where the TR nn ×  matrix Q  has orthogonal columns 
with unit norm and the TT nn ×  matrix R  is upper 
triangular. By multiplying the received signal x  with 
the Hermitian transpose of Q , the sufficient statistic 

ηRarQa +== H~                     (26) 
for the transmit vector a  is obtained. Note that the 
statistical properties of the noise term nQη H=  
remain unchanged. Due to the upper triangular 
structure of R , the thk  element of a~  is 

k

n

ki
iikkkkk

T

arara η+⋅+⋅= ∑
+= 1

,,
~             (27) 

Thus, 
Tna~  is free of interference and can be used to 

estimate 
Tna  after appropriate scaling with 

TT nnr ,1 . 
Proceeding with 11

~,,~ aa
Tn …−  and assuming correct 

previous decisions, the interference can be perfectly 
cancelled in each step. Then it follows from (27) that 
the SNR of layer k  is determined by the diagonal 

element 
2

,kkr . 
As already mentioned, the detection sequence is 

crucial due to the risk of error propagation. It can be 
modified by permuting elements of a  and the 
corresponding columns of H  prior to the QR 
decomposition, leading to different matrices Q  and 
R  [8]. In order to find the optimum sequence, kkr , , 
which represents the length of the component of the 
column vector kh  that is perpendicular to the space 
spanned by 11 ,, −khh … , needs to be maximized for 

1,,…Tnk = . This may be accomplished in a straight 

forward way by performing )2/( 2
TnO  different QR 

decompositions of permutations of H  [3]. A far more 
efficient approach is based on the easily verified 
relation 

HQRHG 1
ZF

−+ ==                   (28) 
and the fact that the row norms of ZFG  equal those of 

1−R . Keeping in mind that the signal 
Tna  is detected 

first and recalling the optimal ordering criterion from 
Section 3-B, the last row of 1−R  must have minimum 
norm. If necessary, rows of 1−R  as well as the 
corresponding columns of R have to be exchanged at 
the expense of destroying the upper triangular 
structure. However, by right multiplying the permuted 

version of 1−R  with a proper unitary TT nn ×  
Householder matrix Θ , a block triangular matrix is 
achieved. Finally, Q  has to be updated to QΘ  while 
the permuted R  is left multiplied with HΘ . These 
steps are then iterated for the upper left 

)1()1( −×− TT nn  sub matrices of the such modified 

matrices 1−R , R  and the first 1−Tn  columns of the 
new matrix Q , resulting in the QR decomposition of 
the optimally ordered channel matrix H .  

The computational effort is made up of an initial 
QR  decomposition, the inversion of R , and the 
subsequent ordering, which is dominated by the 
multiplications of 1−R , R , and Q  with the 
Householder matrix Θ  in each step. Although this is 
much better than computing the pseudo-inverse over 
and over again as in the original ZF-BLAST, a 
suboptimal algorithm proposed by the authors [8] 
requiring only a single sorted QR  decomposition is 
reviewed in the next section. 

D. Zero-Forcing Sorted QR Decomposition  

In order to obtain the optimal detection order, first 

TT nnr ,  has to be maximized over all possible 
permutations of the columns of the channel matrix H , 
followed by 

TT nnr , , and so on. Unfortunately, using 
standard algorithms for the QR  decomposition, the 
diagonal elements of R  are calculated just in the 
opposite order, starting with 1,1r . This makes finding 
the optimal order of detection such a difficult task. 

The sorted QR  decomposition (SQRD) algorithm is 
basically an extension to the modified Gram-Schmidt 
procedure [10] by reordering the columns of the 
channel matrix prior to each orthogonalization step. 
The fundamental idea is that kkr ,  is minimized in the 

order it is computed (from 1 to Tn ) instead of being 
maximized in the order of detection (from Tn  to 1). 
This is motivated by the fact that the layers detected 
last affect only few other layers through error 
propagation and may therefore have rather small SNR, 
which increases the probability of large SNR for the 
first layers. Now, 1,1r  is simply the norm of the column 
vector 1h , so the first optimization in the SQRD 
algorithm consists merely of permuting the column of 
H  with minimum norm to this position. During the 
following orthogonalization of the vectors 

Tnhh ,,2 …  
with respect to the normalized vector 1h , the first row 
of R  is obtained. Next, 2,2r  is determined in a similar 
fashion from the remaining 1−Tn  orthogonalized 
vectors, et cetera. Thereby, the channel matrix H  is 
successively transformed into the matrix Q  associated 



 

with the desired ordering, while the corresponding R  
is calculated row by row. Note that the column norms 
have to be calculated only once in the beginning and 
can be easily updated afterwards. Hence, the 
computational overhead due to sorting is negligible. 

E. MMSE BLAST with QR Decomposition Detection 

In order to extend the QR based detection with respect 
to the MMSE criterion, we can apply the similarity of 
ZF and MMSE detection noted in Section V.A. We 
introduce the QR decomposition of the extended 
channel matrix (12) 
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where the TRT nnn ×+ )(  matrix Q  with orthonormal 
columns was partitioned into the TR nn ×  matrix 1Q  
and the TT nn ×  matrix 2Q . Obviously, 

RQHQHQ 1 =+= H
n

HH σ 2              (30) 
holds and from the relation RQI 2=

Tnnσ  it follows 
that 

2
1 Q1R

nσ
=−                    (31) 

i.e. the inverse 1−R  is a byproduct of the QR 
decomposition and 2Q  is an upper triangular matrix. 
Using (30) and (31), the filtered receive vector 
becomes 

n.QaQaRrQrQa HH
n

HH σ 121
~ +−===    (32) 

The second term on the right hand side of (32) 
including the lower triangular matrix H

2Q  constitutes 
the remaining interference that can not be removed by 
the successive interference cancellation procedure. 
This points out the trade-off between noise 
amplification and interference suppression. 

The optimum detection sequence now maximizes the 
signal to-interference-and-noise ratio (SINR) for each 
layer, leading to minimal estimation error for the 
corresponding detection step. The estimation errors of 
the different layers in the first detection step 
correspond to the diagonal elements of the error 
covariance matrix (28) 

H
n

H
n σσ −−− == RR)HH(Φ 11 22 .       (33) 

The estimation error after perfect interference 
cancellation is given by 

2
,

2
kkn rσ . Thus, it is again 

optimal to choose the permutation that maximizes 

kkr ,  in each detection step. The algorithm in the next 
section determines an optimized detection sequence 
within a single sorted QR decomposition and thereby 
significantly reduces the computational complexity in 
comparison to standard MMSE-BLAST algorithms. 

F.MMSE BLAST Sorted QR Decomposition Detection 

In order to obtain the optimal detection order, first 

TT nnr
,

 has to be maximized over all possible 

permutations of the columns of the extended channel 
matrix H , followed by || 1,1 −− TT nnr , and so on. 
Unfortunately, using standard algorithms for the QR 
decomposition, the diagonal elements of R  are 
calculated just in the opposite order, starting with 1,1r . 
This makes finding the optimal order of detection a 
difficult task. 

The fundamental idea is that || ,kkr  is minimized in 
the order it is computed ),,1( Tn"  instead of being 
maximized in the order of detection )1,,( "Tn . This is 
motivated by the fact that the layers detected last affect 
only few other layers through error propagation and 
may therefore have rather small SINR, which increases 
the probability of large SINR in the first layers. Now, 

1,1r  is simply the norm of the column vector 1h , so the 
first optimization in the SQRD algorithm consists 
merely of permuting the column of H  with minimum 
norm to this position. During the following 
orthogonalization of the vectors 

Tnhh ,,2 "  with 

respect to the normalized vector 1h , the first row of 
R  is obtained. Next, 2,2r  is determined in a similar 
fashion from the remaining 1−Tn  orthogonalized 
vectors, et cetera. Thereby, the extended channel 
matrix H  is successively transformed into the matrix 
Q  associated with the desired ordering, while the 
corresponding R  is calculated row by row. Note that 
the column norms have to be calculated only once in 
the beginning and can be easily updated afterwards. 
Hence, the computational overhead due to sorting is 
negligible. 

VI. SIMULATION RESULTS 

The error performances of the proposed four coding 
schemes are compared for QPSK modulation. The 
block error rates of the simulation for a system with 

4=Tn  and 6=Rn  antennas are shown in the next 
figure. The block error rates are calculated defining a 
block as a set of 120=L  symbols. Therefore, a block 
will be in error in any of the L  symbols in it is in 
error. The strong impact of ordering the QR 
decomposition is obvious and only a small difference 
with the V-BLAST is noticed at higher SNR. The same 
thing can be said if we compare V-BLAST and 
Successive Cancellation. We notice an important 
increase of performance between V-BLAST and SUC, 
due to the optimal ordering that is being done in V-
BLAST that is not done in SUC. As can be seen from 
Figures 2 and 3, there is a coding gain of about 3.5 dB 

0.01)(@FER =  between the sorted and unsorted 



 

methods (between V-BLAST and Successive 
Cancellation and between QR Decomposition and 
Sorted QR Decomposition). 

As said before, the simulation is to compute the 
block error rate in both cases for different values of 
SNR in a white Gaussian channel. In these 
calculations, SNR is defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

o

s

N
E

log10SNR                 (34) 

where sE  is the symbol energy, normalized to 1 for 
this constellation, and 0N  is the noise variance. The 
transmitted symbols are encoded using the QPSK 
constellation with mean symbol energy of 1, 4 
transmitters and 6 receivers. 

VII. CONCLUSIONS  

We have described different wireless architectures, 
capable of realizing different spectral efficiencies over 
a rich scattering wireless channel. The general V-
BLAST, SUC, QR and Sorted QR decompositions 
were described in detail and the results in the 
comparison on error performances of the schemes 
were reported. Results show that sorting can bring an 
important improvement over performance for these 
codes. We also showed that the Sorted QR algorithm 
requires less computational effort, and brings little loss 
in performance compared to the most optimum of the 
four codes; The V-BLAST scheme. 
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Figure 2: FER versus SNR for different types of LST 

codes for ZF detection. 
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Figure 3: FER versus SNR for different types of LST 

codes for MMSE detection. 


