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Abstract  —  In the past two decades, the utilization of 

supplementary excitation control signals for improving the 
dynamic stability of power systems has received much 
attention. In recent years, several approaches based on 
modern control theory and intelligent control and 
optimization techniques have been applied to PSS design 
problem. This paper introduces a review on the techniques 
applied on the conventional PSS design only. The 
techniques could be mainly classified into linear and 
nonlinear. Each classification includes several design 
methods which make the PSS more effective and robust in 
damping out the low frequency oscillations. 

Index Terms  —  Power system stabilizer (PSS), Low 
frequency oscillations, Damping, Dynamic, Stability . 

I. INTRODUCTION 

Beginning in the late 1950's and early 1960's, most of 
the new generating units added to electric utility systems 
were equipped with continuously-acting voltage 
regulators. As these units became a larger percentage of 
the generating capacity, it became apparent that the 
voltage regulator action had a detrimental impact upon 
the dynamic stability or the steady-state stability of the 
power system. This is due to the oscillations of small 
magnitude and low frequency which are typically in the 
range of 0.7 to 2 Hz for local mode and 0.1 to 0.8 Hz for 
inter-plant or inter-area mode. Without timely and 
properly handling and control, these oscillations can 
sustain, continue to grow, spread through out the system 
and eventually cause the system disconnection and 
collapse. [1] & [2] 
Supplementary excitation control of the low frequency 
oscillations is well known as a power system stabilizer 
(PSS). It was developed to aid in damping the 
electromechanical oscillations via modulation of the 
generator excitation. Although modern control methods 
have been used by several researchers to minimize the 
prescribed objective function, power system utilities still 
prefer the conventional lead-lag power system stabilizer 
structure. The reason behind that might be the ease of 
online tuning and the lack of assurance of the stability 
related to some adaptive or variable structure 
techniques. [3] Since the PSS has attracted the attention 

of researchers, extensive research has been conducted in 
the following fields: 

• Effect of PSS on system stability. [4]-[8] 
• Optimum PSS location & number. [9, 10] 
• PSS tuning methods. [11]-[13] 
• PSS input signals. [14]-[16] 
• Practical experience in design, installation & 

operation of PSS. [17, 18] 

II. POWER SYSTEM STABILIZER BASICS 

The block diagram of a single-input PSS is shown in 
fig.1. Various structures of PSS can be implemented. 
The common structures are: 
(a) Lead-lag structure or conventional PSS 
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Where, y is the input signal. 
(b) Proportional-integral-derivative structure. 
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(c)  Other structures based on optimal, 
adaptive, variable structure, intelligent… 
etc. 

The common input signals used are the speed, 
frequency, electric and accelerating power deviations. 
However, PSS can be either conventional PSS (one-
band PSS) which is (analog or digital) or multi-band 
PSS as in Fig. 2. In this paper, a literature survey on the 
design methods of the conventional PSS only will be 
presented.  

  Fig. 1: PSS Structure 
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  Fig. 2: Types of PSS 

III. ANALOG CONVENTIONAL PSS 

In general, analog conventional power system 
stabilizer design methods could be categorized into 
linear and nonlinear methods of design.  

A. Linear Methods of Design 

Several linear methods were proposed to design the 
power system stabilizers which are: 

1. Pole-Placement 
    Controllers obtained from simultaneous 

stabilization techniques have fixed gains constant to 
adaptive controllers. These reasons induced Othman and 
his co-workers in [19] to apply a pole-placement 
procedure to design non-switching controllers for 
systems with multiple operating conditions. A set of 
gains were separately designed. Then, a special root 
locus technique was used to adjust the gains and only 
dominant modes were used in the controller design. The 
new stabilizer performs better than the traditional one 
especially if a machine outage occurs. 

    On the other hand, a new and more efficient pole-
placement PSS design method was proposed by Yu and 
Li in [20]. In this method, participation factors were 
used to select the sites and number of stabilizers in a 
multi-machine system. 

2. Pole-Shifting 
    Previous works on self-tuning PID stabilizers deal 

with a single machine infinite bus system. Wu and Hsu 
in [21] extended the previous results to a multi-machine 
power system. A pole-shifting technique, which is 
different from the pole-assignment method and the 
minimum variance algorithm adopted were developed 
for the tuning of the stabilizer's parameters. By 
continuously estimating system input-output 
relationship from the measured inputs and outputs, the 
gain settings of the self-tuning PID stabilizer were 
adjusted in real-time. In addition, shifting the real parts 

of complex open-loop poles to any desired positions 
was the work presented in [22]. Power System Stabilizer
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3. Linear Quadratic Regulator Formulation 
    Power utility operators are eager to obtain all 

generators and turbine control input signals within their 
own power station to get better accuracy in the 
identified signals. The authors in [23] presented a power 
system stabilizer using the differential geometric 
linearization approach. This stabilizer used information 
at the secondary bus of the step-up transformer as input 
signals to the internal generator bus by defining the 
secondary bus as the reference bus instead of an infinite 
bus. However, PSS designed using Linear Quadratic 
Regulator (LQR) formulations required complete 
measurements which were neither practical nor 
economical for most cases. Thus, a power system 
stabilizer based Linear Quadratic Gaussian Regulator 
with loop transfer recovery was presented in [24].  

4. Linear Matrix Inequalities 
    Scavoni & et al. [25] applied to power systems a 

design method for robust controllers based on the 
solution of LMI. Boukarim & et al., however, proposed 
in [26] two low-order centralized and decentralized 
PSSs using the LMI. The centralized controllers require 
much low gain to achieve the same amount of damping 
enhancement, have less disturbance rejection 
capabilities and require fast communication links to 
implement.  

5. Linear Optimal Control 
    Linear optimal control theory was applied in [27] to 

design an output feedback controller. It has been 
extensively tested under wide-range of operating 
conditions and found to result in consistently good 
control.  

6. Quantitive Feedback Theory 
    Shrikant and his colleague in [28] thought to 

extend the conventional stabilizer performance to cover 
a wide range of operating and system conditions by 
simply retuning the existing PSS. They have handled the 
parametric uncertainty in the small signal linearized 
model of the plant using the quantitive feedback theory 
(QFT). In addition, a robust power system stabilizer 
using quantitive feedback theory was designed by 
Sedigh and et al. in [29]&[30] to overcome the problem 
of parameters variations. 

7. Eigenvalue Sensitivity Analysis 
    In [31], the power system stabilizer and the FACTS 

device stabilizer coordination was carried out by an 
objective function based on second-order eigen-
sensitivities. The objective function was solved by two 
means: the Levenberg-Marquardt method and a genetic 
algorithm in face of various operating conditions. 
Considering multi-operating conditions, however, the 
probabilistic approach was applied to robust PSS design 
in [32]. Two types of probabilistic sensitivity indices 
were developed for PSS site selection and parameter 
adjustment. The authors in [33] used both the right-
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eigenvector and the left-eigenvector to define the 
sensitivity of PSS effect to select the best PSS locations 
for damping local and inter-area oscillations. 

8. Sliding Mode Control 
    A nonlinear PSS with a new sliding mode control 

(SMC) technique has been proposed in [34]&[35]. The 
latter had good performance for most perturbations but 
often required more control energy. 

9. Conventional P-Vr Method 
    Gibbard & Vowles aimed to ensure that intra-

station, local & exciter modes are well damped. They 
have outlined in [36] a procedure based on P-Vr method 
to design a robust PSS over a wide range of operating 
conditions. 

10. Reduced Order Model 
    In [37], reduced order models were used to design 

feasible control schemes with little performance 
degradation. 

11. Control 2
    Application of optimal adaptive control 

algorithm in a power system stabilizer was described in 
[38]. The algorith  deals with disturbance attenuation 
in the sense of  norm for nonlinear systems. The 
controller was free from repetitive parameter tuning. 

H
2H
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B. Nonlinear Methods of Design 

    To improve the damping torque applied by the 
PSS, researchers have used different nonlinear 
techniques including the following: 

1. Adaptive Control 
    Adaptive control techniques could be classified into 

two categories: 
• Adaptive Automatic Methods 

    Because of fixed structures and parameters of 
traditional PSS, adaptive techniques [39, 40] have been 
applied on the design of PSS in recent years in order to 
reduce lacking of adaptivity to system operating 
condition changes. Examples involved the generalized 
Multivariable Minimum Variance (GMMV) control 
technique in [2] and the Model Reference Adaptive 
Control-Almost Strictly Positive Real (MRAC-ASPR) 
theory as in [41]. 

• Self-Tuning & Self-Scaling Methods 
    References [42]-[50] all proposed several self-

tuning and self-scaling PSS s with various 
characteristics. 

• Heuristic Dynamic Programming 
    Liu and Venayagamoorthy proposed a PSS based 

on heuristic dynamic programming in [51]. HDP 
combined the concepts of dynamic programming and 
reinforcement learning in the design of nonlinear 
optimal PSS. It was a class of adaptive critic designs. 

2. Intelligent Control & Optimization Methods 
    There were eight main intelligent techniques used 

to design the power system stabilizer which are: 
• Genetic Algorithm 

    Genetic algorithm is independent of the complexity 
of the performance index. It suffices to specify the 
objective function and to place finite bounds on the 
optimized parameters too. Because of that, researchers 
have used it either to simultaneously tune multiple 
controllers in different operating conditions [52]-[54] or 
to enhance the power system stability as in [55, 56] via 
PSS & SVC based stabilizer when applied 
independently & also through coordinated application. 
On the other hand, others did not use GA because of 
several reasons mentioned in [57].   

• Tabu Search 
    To avoid computations of sensitivity factors and 

eigenvectors, Abido & Abdel-Magid [57] have used the 
TS to design a PSS for a multi-machine system.  

• Particle Swarm Optimization 
    Unlike the other heuristic techniques, PSO is 

characterized as simple in concept, easy to implement, 
computationally efficient, and has a flexible and well-
balanced mechanism to enhance the global and local 
exploration abilities. Thus, PSO has been proposed in 
the design of PSS in [58]-[60]. 

• Simulated Annealing 
    Simulated annealing is a derivative-free 

optimization algorithm and no sensitivity analysis is 
required to evaluate the objective function. All these 
reasons induced the researchers [61]-[64] to design a 
simulated annealing based power system stabilizer. 

• Neural Networks 
    Two reasons are put forward for using ANN in 

power system stabilizer design which are the extremely 
fast processing facility and the ability of ANN to realize 
complicated nonlinear mapping from the input space to 
the output space. The work on the application of neural 
networks to the PSS design includes online tuning of 
conventional PSS parameters, the implementation of 
inverse mode control, direct control, and indirect 
adaptive control. [51, 65] Nearest to this work was the 
design of an indirect adaptive neural network based PSS 
by Liu and his co-workers in [66] and by Shamsollahi 
and Malik in [67]. However, the latter considered the 
effect of the trapped delay lines in the controller 
structure. In [67, 68], the authors have proposed a 
neuro-identifier to identify the plant in real-time and a 
neuro-controller to damp the power system oscillations. 
Different kinds of NN have been used by researchers in 
PSS design. This includes the layered and multi-layer 
feed-forward NN as in [69] & [70, 71] respectively. On 
the other hand, Yilmaz & et al. [72] have used back-
propagation NN to seek for strong correlation among 
the state variables. In addition, while one radial basis 
function (RBF) network has been used in PSS design in 
[73]-[75], two recurrent ones were employed in [76].    

• Support Vector Machine 
    The SVM is a novel type of learning machines 

based on the statistical learning theory. Boonprasert & 
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his companions in [77] were compared the support 
vector regression based PSS to NN based PSS and RBF 
based PSS and it gave most robust results.  

• Fuzzy Logic 
    Fuzzy logic controllers are model-free controllers. 

They do not require an exact mathematical model of the 
controlled system. Paper [78] summarized the 
development of a fuzzy logic PSS during last several 
years whereas paper [79]-[81], proposed a systematic 
procedure for FLPSS design. To enhance the stability of 
power systems, FLC based PSS, a PID FLPSS, self-
learning FLC based PSS and augmented FLPSS were 
introduced in [81,82], [83] [46]& [5] respectively. In 
[84], a FLPSS was designed with no chattering and 
steady state offset problems. However, references [35], 
[48]-[50] [85, 86] all proposed design methodologies of 
different FL based adaptive PSS. The last but not the 
least, is the fuzzy polar PSS proposed in [87] using 
frequency domain methods.   

• Rule-Based Method 
    Expert system rule based power system stabilizers 

were proposed in [86] [88, 89]. Although they showed 
promising results, they were subjective and somewhat 
heuristic.   

3. Lyapunov Method 
    The lyapunov direct method showed that the 

system was exponentially stable with the properly 
chosen control gains. In [90], Robak & et al. compared 
two control structures for lyapunov based PSS. 

4. Frequency Response Methods 
    Frequency response is not markedly affected by 

change of operating conditions. A multi-machine 
expression in [91] was derived using operational matrix 
techniques for the analysis of the frequency responses. 
However, a two single machine infinite bus model was 
derived from a multi-machine system by coherency 
based equivalent reduction technique for the same 
purpose. These frequency responses were necessary for 
the design of PSS since the component of the frequency 
response depending on the generator only has a fixed 
shape regardless of the generator operating condition. 
Prony analysis has been used to determine the modes of 
power system oscillation from network generator swing 
curves [92] and to obtain the transfer function models in 
large systems for PSS design [93]. Papers [30] & [94] 
used the frequency domain based quantitive feedback 
theory, and the periodic output feedback technique 
respectively in the PSS design.   

5. Dissipativity Method 
    A framework for the analysis of performance and 

synthesis of power system stabilizers was introduced in 
[95]. This framework was based on a dissipativity 
concept. The concept was to view the role of PSS as one 
of dissipating rotor energy and to quantify energy 
dissipation using the system theory notation of passivity. 

6. Agent Technology 

    Ni and his co-workers proposed in [96] a 
supervisory level PSS (SPSS) using wide area 
measurement. The SPSS operated as a software agent 
that contained a fuzzy logic controller switch to select 
the appropriate robust controller for the corresponding 
system operating condition.   

7. Gain Scheduling Method 
    A design of an optimum gain scheduling PSS was 

proposed in [97] since it was difficult to obtain a fixed 
set of feedback gains which gave satisfactory 
performance over a wide operating range. However, 
time delay can make a control system have less damping 
and, consequently, losing its synchronism.  Thus, a 
centralized wide area control design using system wide 
data has been investigated by Hongxia and Heydt in 
[98] to enhance large interconnected power systems 
dynamic performance. A gain scheduling (GS) method 
was proposed to accommodate the time delay. 

8. Phasor Measurements 
    An architecture for multi-site power system control 

using wide area information provided by GPS based 
phasor measurement units was proposed in [99]. This 
architecture provided a step-wise development path for 
the global control of power systems. 

9. Optimization Methods  
In [100], the minimax optimization technique was 

used to tune of power system stabilizers. Fathizadeh and 
his co-workers in [101] formulated the power system 
stabilizer design problem as a parameter constrained 
nonlinear optimization problem to maximize the 
stability margin. In addition, paper [102] presented a 
reduced order feedback controller designed with a 
weighting matrix optimization technique while paper [3] 
introduced an optimal design of PSSs using 
evolutionary programming optimization technique.  

IV. DIGITAL CONVENTIONAL PSS 

The digital stabilizers designed have low orders, 
require considerably slow sampling rates for 
implementation, and outperform the conventional 
(analog) power system stabilizer on a series of dynamic 
performance tests. These advantages induced 
researchers to improve the digital power system 
stabilizer. In [103], three robust digital PSS designs 
were studied and compared using ∞ and optimization. 
The ∞  based optimization could considerably 
improve performance and robustness of power systems.  

H
H

V. CONCLUSION 

In this paper, a review of the techniques used by 
researchers in designing the conventional (analog and 
digital) PSS only was presented. These techniques could 
be classified as linear and nonlinear. Each classification 
includes several design methods which make the PSS 
more effective and robust in damping out the low 
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frequency oscillations. However, a review of the multi-
band PSS design methods could be considered in the 
future.   
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