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Abstract — Modelling of Overcurrent (OC) 

relays with inverse time relay characteristics is a vital 
job for coordination of these relays. There are many 
publications in which the OC relay characteristics 
have been modelled. In this paper a new model based 
on cascade correlation neural network is proposed. 
The cascade correlation neural network is used to 
calculate operating times of OC relays for various 
Time Dial Settings (TDS) or Time Multiplier Settings 
(TMS).  This method can cover nonlinearity of the 
characteristic and its accuracy is much higher than 
the polynomial and the other neural networks models 
such as perceptron and backpropagation neural 
networks models.  

The method is tested on three types of OC relays 
and the results obtained shows, the accuracy of the 
new method is higher and therefore it is more useful 
than the others. The model is validated by comparing 
the results obtained from the new method with 
nonlinear analytical, perceptron and 
backpropagation neural networks models. 

Index Terms — Overcurrent Relay, Relay 
Coordination, Relay Modelling, Neural Network, 
Cascade Correlation 

I. Introduction 
Many attempts have been used in the past to 

coordination different types of OC relays with inverse 
time-current characteristics [1, 2, 3]. To coordinate OC 
relays in a network, time-current (TC) curves are modelled 
and stored in the computer [4, 5]. If the relays 
characteristics are not modelled well, the settings of the 
relevant relays may not be accurate. Therefore 
maloperation of protection system may occur during fault 
appearance. 

Each OC relay posses many Time-Current (TC) 
curves which must be represented in a computer [6]. The 
simplest method for modelling OC relay is based on 
specify points of characteristic’s curve for different 
TDS/TMS and store in the memory of the computer. If the 
operating point does not match with one set of the stored 
values, then an interpolation is necessary to determine the 
corresponding time or TDS/TMS. Therefore, the problems 
with this method are due to large space memory of the 
computer [7]. For the midpoints, interpolation is necessary 
otherwise, the accuracy is disturbed. 

Another way is software models. Software models of 
OC relay characteristics play a major role in coordinating 
protection schemes of power systems [8].  

In other methods, the relay characteristics are 
modelled mathematically by polynomial form. In these 
methods the variation of t versus TDS is assumed linear. 
Reference [9] shows that Sachdev models are simple and 
have useful polynomials for modelling OC relays for 
coordination purposes. 

Recently a method based on fuzzy logic and 
perceptron neural network has been presented [10]. 

In this paper a new model, which is more accurate 
than analytical models and other neural networks models 
and does not have difficulties of look up table method, 
based on cascade correlation artificial neural networks for 
OC relays is proposed. 

The new model has accurate estimation for operation 
times of the OC relays when the operating times of an OC 
relay lay over a vast area. Cascade correlation neural 
network has simpler training rules, minimum topology 
(because of its dynamical training algorithm) and high 
accuracy than the other neural networks.  

The proposed model is tested on three types of OC 
relays. The results are compared with nonlinear analytical, 
perceptron and backpropagation neural networks models 
and from them it will be shown that the results of the new 
method are much accurate than the others. 

II. CASCADE CORRELATION NEURAL 
NETWORK 

Cascade correlation neural network is a network in 
witch the modification is made in training algorithm [11]. 
The most significant difficulty with current learning 
algorithms for neural networks such as backpropagation, 
is their slow rate of convergence. This is due to the fact 
that all of the weights are being adjusted at each stage of 
training. A further complication is the rigidity of the 
network architecture throughout training [11, 12, 13, 14]. 

In other word, overcurrent relay characteristics 
modeling using perceptron and backpropagetion neural 
networks needs two nodes in the input layer, 108 nodes in 
the hidden layers and one node in the output layer [10]. 
Therefore, their topologies are very complicated and their 
training is too difficult. To solve this problems, cascade 



 
correlation neural network for relay modeling is used and 
described below. 

Cascade Correlation network addresses both of these 
issues by dynamically adding hidden units to the 
architecture, but only up to the minimum number 
necessary to achieve the specified error tolerance for the 
training set. Furthermore, a two-step weight-training 
process admits that only one layer of weights is being 
trained at any time. This allows the use of simpler training 
rules (the delta rule, perceptron etc.) than for multi layer 
training. In practice, a modification of back propagation 
algorithm known as Quick Propagation is usually used 
[11, 15]. 

A cascade correlation net consists of input units, 
hidden units, and output units [12]. At first, input units are 
connected directly to output units with adjustable 
weighted connections. Connections from inputs to a 
hidden unit are trained when the hidden unit is added to 
the net and are then frozen. Connections from the hidden 
units to the output units are adjustable consequently. 

Cascade correlation network starts with a minimum 
topology, consisting only of the required input and output 
units and a bias input that is always equals to 1. This net is 
trained until no further improvement is obtained. The error 
for each output is then computed by summing over all 
training patterns. 

Next, one hidden unit is added to the net in a two 
steps process. In the first step, a candidate unit is 
connected to each of the input units, but is not connected 
to the output units. The weights on the connections from 

the input units to the candidate unit are adjusted to 
maximize the correlation between the candidate’s output 
and the residual error at the output units. The residual 
error is the difference between the target and the computed 
output, multiplied by the derivative of the output unit’s 
activation function, i.e., the quantity that would be 
propagated back from the output units in the 
backpropagation algorithm. When this training is 
completed, the weights are frozen and the candidate unit 
becomes a hidden unit in the net. 

The second step in which the new unit is added to the 
net now begins. The new hidden unit is then connected to 

The output units and the weights on the connections 
are adjusted. Now all the connections to the output units 
are trained. Here the connections from the input units are 
trained again, and the new connections from the hidden 
unit are trained for the first time. 

After that, a second hidden unit is added using the 
same process. However, this unit receives an input signal 
from the both input units and the previous hidden unit. All 
weights on these connections are adjusted and then frozen. 
The connections to the output units are then established 
and trained. The process of adding a new unit, training its 
weights from the input units and the previously added 
hidden units, and then freezing the weights, followed by 
training all connections to the output units, is continued 
until the error reaches an acceptable level or the maximum 
number of epochs (or hidden units) is reached. 

This process is shown in figures 1 to 5.

   

Fig. 1. Stage 0, no hidden units Fig. 2. Stage 1, one candidate unit (z1) Fig. 3. Stage 1, one hidden unit (z1) 

  

Fig. 4. Stage 2, new candidate unit (z2) Fig. 5. Stage 2, hidden unit (z2) 
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As mentioned in introduction and the reasons 

described the beginning of this section, cascade 
correlation shown in figures 1 to 5 is used for considering 
nonlinearity relationship between operating times and 
their TDS/TMS in OC relay modelling.  

The cascade correlation neural network has two 
nodes in the input layer, two nodes in the hidden layer and 
one node in the output layer. The current multiplier setting 
and TDS/TMS are selected as input data. These are shown 
in figures 1 to 5 as X1 and X2. The output of the neural 
network is operating times and shows as Y1. It should be 
noted that Z1 and Z2 are hidden nodes and  W, U and t are 
weights between  input-output, hidden-output and hidden 
nodes respectively. The ways of calculating the weights 
have been described before in this section. The input data 
are normalized before applying to the neural network, 
because normalizing improves the learning process of 
neural network.  

The output layer’s activation function is linear and 
the hidden layer’s activation function is sigmoid. The 
random values of initial weights are between -0.5 and 0.5. 

As described in this section, cascade correlation 
neural network has simpler training rules, minimum 
topology because of its dynamical training algorithm and 
in the next section it will be shown that it possess high 
accuracy than the other neural networks. 

III. Case study 
Three types of OC relays were used for testing the 

new method. These are RSA20, CRP9D and SIEMENS 
75K88. Relay RSA20 is inverse electromechanical OC 
relay. Relay CRP9D is very inverse relay and the third one 
is an inverse static OC relay. TDS of first two relays 
varies from 4 to 20 and TMS of the third one varies from 
0.05 to 0.5. The sampled data of the relay are illustrated in 
Fig. 6, Fig. 7 and Fig. 8 for relays modelling, however, 
additional sampled data shown in Fig. 9 and 10 are used 
for testing and comparing between the analytical, 
backpropagation, perceptron neural networks with 
proposed model. For SIEMENS 75K88, data in Fig. 8 are 
used for training and testing the cascade correlation, 
perceptron and backpropagagtion neural networks. 

 
Fig. 6.  time-current curve of RSA20 OC relay when TDS=4, 8, 14 and 20 

 
 

Fig. 7. time-current of CRP9D OC relay when TDS=4, 6, 7 and 10 
Fig. 8. time-current of SIEMENS 75K88 OC relay when 

TMS=0.05,0.1,0.2,0.3 and 0.5 

  

Fig. 9. Test time-current of RSA20 OC relay when TDS=4, 8, 14 and 20 Fig. 10. Test time-current of CRP9D OC relay when TDS=4, 6, 8 and 10 

The sampled data are obtained by performing 
experimental tests five times using an accurate 
computerised relay tester for RSA20, CRP9D and 
SIEMENS 75K88 relays, to make sure the measurements 
results are correct. 

The relationship between the operating times of an 
OC relay and its TDS/TMS is not usually linear. As an 
example in Fig. 11-a, when TDS is 20, the operating time 
of the relay RSA20 is not five times the relevant time for 
TDS=4 for the same current multiplier setting. This is also 
true for the relay CRP9D, which is shown in Fig. 11-b. 



 
However, for static relay the relationship between 
operating times and its TDS/TMS are linear than the 
electromechanical relay then the curves convert to 
horizontal direct lines. It has been shown for SIEMENS 
75K88 in fig 11-c. 

But for both type of static and electromechanical 
relays the effect of nonlinearity in low current settings are 
higher than the other points. 

   

a) The operation time ratio of RSA20 when the 

operating times for TDS=4 are referenced 

b) The operation time of CRP9 when the 

operating times for TDS=0.5 are referenced 

c) The operation time of SIEMENS 75K88 when 

the operating times  for TMS=0.05 are referenced 

Fig. 11.  The operating time relation of different time multiplier setting 

The new method is compared with the nonlinear 
analytical and neural network combined with fuzzy model 
published in reference [10]. 

The analytical equation model is illustrated as Eq. 
(1)[9]. 

6
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Where, x is TDS or TMS. 
The coefficients of Eq. (1) are obtained by curve 

fitting techniques and the number of the coefficients is 
limited to six. This is because of ill-structure matrices and 
poor outputs for the coefficients number higher than six. 
The input data for curve fitting are the sampled operating 
times of different TDS/TMS of an OC relay for a given 
current multiplier settings shown in table 1. 

Hence, for each current multiplier setting there is a 
different set of data and different coefficients. For 
example if for I=6, the coefficients of analytical model for 

a TDS/TMS relay curve is computed, for other currents, 
let say I=4, different coefficients will be obtained. 
Therefore different error percentages will be for the same 
TDS/TMS curve. It means that for each value of current 
multiplier setting, there is a specific equation. But for the 
mathematical nonlinear model of OC relay, only one 
equation must be selected. It is not straightforward, 
because in the protection of power systems, OC relays are 
set and operates under a wide range of current multiplier 
setting. Therefore, each equation produces some errors 
when a relay operates in a section, which is different from 
the section for which data is sampled. This is the problem 
of nonlinear analytical model, which neural network 
model does not have. 

The coefficients of Eq. (1) are shown in Table 1 for 
RSA20, CRP9D and SIEMENS 75K88 respectively. For 
each relay, the current multiplier setting (I) has different 
values, which vary from 6 to 18. 

Table 1. Analytical polynomial coefficients for three type OC relay when I=6, 12 and 18 

Relay type RSA20 OC CRP9D SIEMENS 75K88 

Coefficient Poly1, I=6 Poly2, I=12 Poly3, I=18 Poly1, I=6 Poly2, I=12 Poly3, I=18 Poly1, I=6 Poly2, I=12 Poly3, I=18 

b0 1.1908 1.0249 1.0611 0.0506 1.0249 1.0611 0.0151 0.0110 0.0178 

b1 -5.1414 -1.8461 -1.8543 -0.0415 0.0481 0.0512 19.7707 19.8323 19.6986 

b2 79.6322 55.4136 50.6364 8.2619 -0.2763 0.5123 -1.6610 -1.4216 -1.3449 

b3 -188.3968 -110.2849 -79.6902 -42.5388 8.6108 -3.5950 2.1520 2.1292 2.1110 

b4 230.5395 108.2454 36.1614 102.0402 -39.2359 15.2354 -0.1059 -0.1053 -0.1046 

b5 -140.4977 -48.5280 24.4574 -06.9288 89.8343 -14.5460 -- -- -- 

b6 33.6731 6.9750 -19.8040 40.1574 34.3761 -1.4435 -- -- -- 

For each relays, RSA20, CRP9D OC and SIEMENS 
75K88 relays, comparisons are made between the result of 
the cascade correlation neural network model and those of 
the analytical, perceptron and backpropagation neural 
networks models. All of the models calculate the operating 
time of OC relay for different current multiplier settings, 
i.e., when TDS=14 for RSA20, TMS=0.4 for SIEMENS 
75K88 and TDS=7 for CRP9. The results are shown in 
Table 2, Table 3, Table 4 and table 5. 

The results of the new method developed in this 
paper are shown in column 2 of the tables 2, 3 and 4. In 

the other columns the results of back propagation and 
perceptron neural networks and analytical method which 
has been published in reference [10] are again shown for 
comparison with column 2. To show its flexibility and 
accuracy of the new method the results of cascade 
correlation neural network and the existing methods for 
relay SIEMENS 75K88 which have not been shown 
before even for the previous methods are illustrated in 
table 4. The first column of Table 2, Table 3 or Table 4 
gives different values of current multiplier settings (I). 
Columns poly1 to poly3 refer to the obtained results by 

4=TDS
6=TDS
8=TDS
11=TDS
14=TDS
17=TDS
20=TDS

4=TDS
6=TDS

8=TDS
11=TDS

5.0=TDS
2=TDS

05.0=TMS
1.0=TMS

2.0=TMS

3.0=TMS

5.0=TMS



 
Eq. (1) for the three columns of Table 1, as coefficients for 
RSA20, CRP9D or SIEMENS 75K88 relays. 

Table 2. Error percentages of calculated operating time of RSA20 OC 

relay for TDS=14 when I=6, 12 and 18 

I 
CC 

Neural 

BP 

Neural 

Perceptron 

 Neural 
Poly   1 Poly   2 Poly   3 

6 1.9870 2.1940 2.1941 0.3335 16.4352 19.1328 

12 0.2109 0.4173 4.0419 12.4598 2.2686 4.6380 

18 0.0406 0.8463 0.0511 20.6734 7.3268 5.1798 

Table 3. Error percentages of calculated operating time of CRP9D OC 

relay for TDS=7 when I=6, 12 and 18 

I 
CC 

Neural 

BP 

Neural 

Perceptron 

 Neural 
Poly   1 Poly   2 Poly   3 

6 1.0139 1.5477 2.7357 8.8928 19.1230 6.2242 

12 1.2061 1.7469 6.3199 2.1858 7.0036 4.5828 

18 0.4218 2.5527 0.7215 16.5961 27.5499 13.7387 

Table 4. Error percentages of calculated operating time of SIEMENS 

75K88 OC relay for TMS=0.4 when I=6, 12, 18 and 24 

I 
CC 

Neural 

BP 

Neural 

Perceptron 

 Neural 
Poly   1 Poly   2 Poly   3 

6 0.0772 0.0967 0.0972 0.2009 0.5345 0.0777 

12 0.0224 0.0204 0.0244 0.8345 0.1038 0.5576 

18 0.0633 0.0869 0.0945 0.3207 0.4138 0.0424 

Table 5. error percentage average of each method of three types of OC 

relays 

Average of 

error 

percentage 

RSA20 CRP9D 
SIEMENS 

75K88 

CC neural net 0.7462 0.8806 0.0543 

BP neural net 1.1525 1.9491 0.0680 

Perceptron 

neural net 
2.0957 3.2590 0.0720 

Poly 1 11.1556 9.2249 0.4520 

Poly 2 8.6769 17.8922 0.3507 

Poly 3 9.6502 8.1819 0.2259 

The results of RSA20 OC relay in Table 2 show that 
the error percentage of the cascade correlation neural 
network model for I=6 is 1.9870 percent, while for 
backpropagation and perceptron neural networks and 
analytical nonlinear model showing in columns Ploy 1, 2 
and 3 are 2.1940, 2.1941, 0.3335, 16.4352, 19.1328 
respectively. Even for most cases, the error of the cascade 
correlation neural network method is less than for the 
backpropagation, perceptron neural networks and Poly 1, 
which is the analytical model with smallest error. The 
comparison shows the error percentage of poly 1 changes 
from 0.3335 to 20.6734 percent, the error percentage of 
backpropagation neural network is from 0.8463 to 2.1940 
and the percentage error of perceptron neural network is 
from 0.0511 to 2.1941. However for the cascade 
correlation neural network column is from 0.0406 to 
1.9870. In other words, the average and variation error is 

much lower for the cascade correlation neural network 
model. 

The results in Table 3 show that the proposed model 
has a good performance. Again, it can be seen from Table 
3, that the error percentage of the cascade correlation 
neural network model changes from 0.4218 to 1.0139 
percent, but for the better cases of the analytical model, 
i.e. ploy 1 and poly 3, they vary from 2.1858 to 16.5961 
and 4.5828 to 13.7387 percent, respectively and for the 
backpropagation  and perceptron neural networks model 
the error percentages vary from 0.5539 to 1.1247 and from 
0.7215 to 6.3199 percent 

The obtained results from table 4 again show that the 
error percentage of the new method is lower than the 
others. 

The error percentage average for each method of 
three types of OC relays are shown in table 5. As it is seen 
from this table the error percentage averages for RSA20 
OC relay in the new method, percepteron and 
backpropagation neural networks, poly1, poly2 and poly3 
are 0.7462, 2.0957, 1.1525 11.1556, 8.6769 and 9.6502 
respectively. In other word the accuracy of the new 
method compared to two others neural networks and three 
kinds of polynomial methods are 1.5, 2.8, 14.9, 11.6 and 
12.9 times. It means that the accuracy of the new method 
is at least 1.5 times to other methods neural networks. To 
compare the accuracy of the new method with polynomial 
method, it can be seen that it’s accurate at least 11.6 times 
to polynomial method. For other types of OC relays i.e. 
CRP9D and SIEMENS 75K88, table 5 shows that the 
error percentage average for the new method is again 
lower than the others. 

IV. Conclusion 
If the relay characteristics not modelled suitably, 

error would appear with settings of relays and 
maloperation of protection system may occur. In the 
traditional analytical methods the relationship between 
operating times and their TDS/TMS have been considered 
linearity while in reality this is not true and therefore the 
accuracy of the relay settings are disturbed. To increase 
accuracy, the neural networks may be used. In this paper a 
new model for OC relays, based on cascade correlation 
neural network is presented. The validity of the proposed 
model is achieved by testing of the methods on three types 
of OC relays. The results show that the error percentages 
of cascade correlation neural network model for the relays 
are lower than analytical and backpropagation and 
perceptron neural networks models. In comparing the 
results of the new method with the backpropagation and 
perceptron neural networks models, it is evident that the 
new model has simpler training rules, minimum topology 
as well as its high accuracy. This is due to its algorithm 
ability to train dynamically. It has been shown that the 
method is flexible and can take into account different relay 
characteristics with linear and nonlinear features. 
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