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Abstract  �  The use of the supplementary controllers of 

a unified power flow controller (UPFC) to damp low 
frequency oscillations is investigated. The potential of the 
UPFC supplementary controllers to enhance the dynamic 
stability is evaluated by measuring the electromechanical 
controllability through singular value decomposition (SVD) 
analysis. Individual designs of the UPFC controllers using 
particle swarm optimization (PSO) technique are 
discussed. A nonlinear, time-domain objective function is 
considered. The effectiveness of the proposed controllers on 
damping low frequency oscillations is tested through 
eigenvalue analysis and non-linear time simulation. For 
comparison, power system stabilizer (PSS) performance is 
also included. 
 

Index Terms  �  Power system stability, particle swarm 
optimization, simultaneous stabilization, PSS, UPFC. 

I. INTRODUCTION 

As power demand grows rapidly and expansion in 
transmission and generation is restricted, power systems 
are today much more loaded than before. This causes the 
power systems to be operated near their stability limits. 
In addition, interconnection between remotely located 
power systems gives rise to low frequency oscillations 
in the range of 0.1-3.0 Hz. If not well damped, these 
oscillations may keep growing in magnitude until loss of 
synchronism results.  

Power system stabilizers (PSSs) have been used in the 
last few decades to serve the purpose of enhancing 
power system damping to low frequency oscillations. 
PSSs have proved to be efficient in performing their 
assigned tasks. However, they may adversely affect 
voltage profile and may not be able to suppress 
oscillations resulting from severe disturbances, 
especially those which may occur at the generator 
terminals.  

A wide spectrum of PSS tuning approaches has been 
proposed. These approaches have included damping 
torque concepts [1], H∞ [2], and variable structure [3], 
and the different optimization and artificial intelligence 
techniques [4]-[5].  

FACTS devices have shown very promising results 
when used to improve power system steady-state 

performance. Because of the extremely fast control 
action associated with FACTS-device operations, they 
have been very promising candidates for utilization in 
power system damping enhancement.  

A unified power flow controller (UPFC) is the most 
promising device in the FACTS concept. It has the 
ability to adjust the three control parameters, i.e. the bus 
voltage, transmission line reactance, and phase angle 
between two buses, either simultaneously or 
independently. A UPFC performs this through the 
control of the in-phase voltage, quadrature voltage, and 
shunt compensation. Till now, not much research has 
been devoted to the analysis and control of UPFCs.  

Several trials have been reported in the literature to 
model a UPFC for steady-state and transient studies. 
Based on Nabavi-Iravani model [6], Wang developed a 
linearized UPFC model [7] which has been incorporated 
into the Heffron-Phillips model.  

A number of control schemes have been suggested to 
perform the oscillation-damping task. Huang et al. [8] 
attempted to design a conventional fixed-parameter 
lead-lag controller for a UPFC installed in the tie line of 
a two-area system to damp the interarea mode of 
oscillation. Mok et al. [9] considered the design of an 
adaptive fuzzy logic controller for the same purpose. 
Dash et al. [10] suggested the use of a radial basis 
function NN for a UPFC to enhance system damping 
performance. Robust control schemes, such as H∞ and 
singular value analysis, have also been explored [11]-
[12].  To avoid pole-zero cancellation associated with 
the H∞ approach, the structured singular value analysis 
have been utilized in [13] to select the parameters of the 
UPFC controller to have the robust stability against 
model uncertainties.    
In this paper, singular value decomposition (SVD) is 
used to select the control signal which is most suitable 
for damping the electromechanical (EM) mode 
oscillations. This is done as SVD analysis can be readily 
used to evaluate the EM mode controllability of the PSS 
and the different UPFC controllers. A SMIB system 
equipped with a PSS and a UPFC controller is used in 
this study. The problem of damping controllers design is 
formulated as an optimization problem to be solved 
using PSO. The aim of the optimization is to search for 



 

the optimum controller parameter settings that minimize 
a nonlinear time-domain error-based objective function. 
Eigenvalue analysis and non-linear simulation are used 
to assess the effectiveness of the proposed controllers to 
damp low frequency oscillations under different 
disturbances.   

II. PROBLEM STATEMENT 

Fig. 1 shows a SMIB system equipped with a UPFC. 
The UPFC consists of an excitation transformer (ET), a 
boosting transformer (BT), two three-phase GTO based 
voltage source converters (VSCs), and a DC link 
capacitors. The four input control signals to the UPFC 
are mE, mB, δE, and δB, where 

mE is the excitation amplitude modulation ratio, 
mB is the boosting amplitude modulation ratio, 
δE is the excitation phase angle, and 
δB is the boosting phase angle. 

A. Power System Model 

By applying Park�s transformation and neglecting the 
resistance and transients of the ET and BT transformers, 
the UPFC can be modeled as [6]-[7]: 
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where vEt, iE, vBt, and iB are the excitation voltage, 
excitation current, boosting voltage, and boosting 
current, respectively; Cdc and vdc are the DC link 
capacitance and voltage, respectively. 

The non-linear model of the SMIB system of Fig. 1 is 
the 4th-order model used in [7]. 

The non-linear dynamic equations can be linearized 
around a given operating point to have the linear model 
given below: 

    BuAxx +=&                 (8) 

where  
 

 
Fig. 1. SMIB power system equipped with UPFC 
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M and D are the inertia constant and damping 
coefficient, respectively; ωb the synchronous speed; δ 
and ω the rotor angle and speed, respectively; Eq

', Efd, 
and v the generator internal, field and terminal voltages, 
respectively; T'

do the open circuit field time constant; xd, 
x'

d, and xq the d-axis reactance, d-axis transient 
reactance, and q-axis reactance, respectively; KA and TA 
the exciter gain and time constant, respectively; Vref the 
reference voltage; and uPSS the PSS control signal; Pm 
and Pe are the input and output power, respectively;K1 � 
K9, Kpu, Kqu, and Kvu are linearization constants. 

B. PSS and UPFC Controllers 

The PSS structure to be considered is the very widely 
used lead-lag controller, whose transfer function is 
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The UPFC damping controllers are of the structure 
shown in Fig. 2, where u can be mE, δE, mB, or δB.  
In order to maintain the power balance between the 
series and shunt converters, a DC voltage regulator must 
be incorporated. The DC voltage is controlled through 
modulating the phase angle of the ET voltage, δE. 
Therefore, the δE damping controller to be considered is 
that shown in Fig. 3, where the DC voltage regulator is a 
PI-controller. 

C. Objective Function and Stabilizer Design 

To select the best stabilizer parameters that enhance 
most the power system transient performance, the 
problem is formulated so as to optimize a selected 
objective function J subject to some inequality 
constraints. To avoid using an approximate linearized 
model, a nonlinear time-domain objective function is 
considered. It is worth noticing that the linearized model 
presented in Section 3 is used only for controllability 
assessment of the control signals. In the controller 
design stage, however, the nonlinear model is used 
directly.  

In this work,  
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Hence, the design problem can be formulated as:  

minimize J 

Subject to 
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where K and T1- T4 are the controller gain and time 
constants, respectively. 

The proposed approach employs PSO to search for the 
optimum parameter settings of the given controllers.  

III. CONTROLLABILITY MEASURE 

To measure the controllability of the EM mode by a 
given input (control signal), the singular value 
decomposition (SVD) is employed. The matrix B can be 
written as B=[b1 b2 b3 b4 b5] where bi is a column vector 
corresponding to the i-th input. The minimum singular 
value, σmin, of the matrix [λI-A bi] indicates the 
capability of the i-th input to control the mode  

 
Fig. 2. UPFC with lead-lag controller 

 
Fig. 3. UPFC with lead-lag controller and DC voltage 
regulator 
 
associated with the eigenvalue λ. Actually, the higher 
the σmin, the higher the controllability of this mode by 
the input considered. As such, the controllability of the 
EM mode can be examined with all inputs in order to 
identify the most effective one to control the mode. [14]-
[15] 

IV. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) was introduced 
first in [18]. This new approach features many 
advantages; it is simple, fast and can be coded in few 
lines.   Also, its storage requirement is minimal.    

Moreover, this approach is advantageous over 
evolutionary and genetic algorithms in many ways.   
First, PSO has memory.   That is, every particle 
remembers its best solution (local best � pbest) as well 
as the group best solution (global best � gbest).   
Another advantage of PSO is that the initial population 
of the PSO is maintained, and so there is no need for 
applying operators to the population, a process that is 
time- and memory-storage-consuming. [16]-[17] 

PSO starts with a population of random solutions 
�particles� in a D-dimension space. The ith particle is 
represented by Xi=(xi1, xi2, �, xiD). PSO consists of, at 
each step, changing the velocity of each particle toward 
its pbest and gbest according to (20). The velocity of 
particle i is represented as Vi=(vi1, vi2, �, viD). The 
position of the ith particle is then updated according to 
(21) [16]-[17].    
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     vid = w*vid + c1*rand( )*(pid-xid) 

                         + c2*Rand( )*(pgd-xid)           (20) 

                                  xid = xid + vid                              (21) 

where, pid = pbest and pgd = gbest 
 

An excellent simplified description of the PSO 
algorithm can be referred to in [18]. A similar procedure 
to that presented in [18] has been employed here. 

V. SIMULATION RESULTS 

A. Controllability Measure 

SVD is employed to measure the controllability of the 
EM mode from each of the five inputs: upss, mE, δE, mB, 
and δB. The minimum singular value, σmin, is estimated 
over a wide range of operating conditions. For SVD 
analysis, Pe ranges from 0.05 to 1.4 pu and Qe= [0, 0.4]. 
At each loading condition, the system model is 
linearized, the EM mode is identified, and the SVD-
based controllability measure is implemented. 

For comparison purposes, the minimum singular value 
for all inputs at Qe= 0.0 and 0.4 pu is shown in Fig. 4 
and Fig. 5, respectively.  

From these figures, the following can be noticed: 
• EM mode controllability via δE is always higher 

than that of any other input. 
• The capabilities of δE and mB to control the EM 

mode is higher than that of PSS. 
• The EM mode is more controllable with PSS than 

with either mE or δB.  
• Generally, all control signals, except mB at unity 

power factor and δE, suffer from low controllability 
to EM mode at light loading conditions.  

B. Stabilizer Design  

The PSO algorithm has been applied to search for the 
optimal parameter settings of each of the supplementary 
controllers so that the objective function is optimized. It 
is worth mentioning that the DC voltage regulator gains, 
kdp and kdi, have been set a priori to the values shown in 
the Appendix. The final parameter settings of the 
supplementary controllers and the corresponding J are 
given in Table I. Notice that the optimization process 
has been carried out with the system operating at 
nominal loading condition given in Table II. 

It is worth pointing out that the optimization of the 
mE- and δB-based stabilizers parameter settings gives rise 
to poorly damped EM modes. Hence, these stabilizers 
and their results are excluded from the analysis 
hereafter. 

The system EM modes and their corresponding 
damping ratios with the proposed PSS, mB- and δE-based 
stabilizers when applied at the three loading conditions 

shown in Table II (nominal, light, and heavy) are given 
in Table III. It is evident that, using the proposed 
stabilizers design, the damping ratio of the EM mode 
eigenvalue is greatly enhanced.  

 
Fig. 4. Minimum singular value with all stabilizers at 
Qe=0.0 

 
Fig. 5. Minimum singular value with all stabilizers at 
Qe=0.4 

TABLE I 
THE OPTIMAL PARAMETER SETTINGS OF THE 

INDIVIDUAL DESIGNS 
 PSS δE mB 

K 
T1 
T2 
T3 
T4 

100.00   
0.08    
0.01   
3.53   
5.00 

100.00    
5.00    
1.17    
0.05  
1.11 

100.00    
0.15   
0.01    
5.00    
3.57 

J 12.64 14.50 25.20 
 

TABLE II 
 SYSTEM OPERATING CONDITIONS 

 Pe Qe 
Nominal 

Light 
Heavy 

1.000 
0.300 
1.100 

0.015 
0.015 
0.400 



 

 

C. Eigenvalue Analysis and Time-Domain Simulations 

Moreover, the nonlinear time-domain simulations are 
carried out at the nominal and light loading conditions 
specified previously. The speed deviations for a 6-cycle 
three-phase fault at nominal and light loading are shown 
in Fig. 6 and Fig. 7, respectively.  

From these results, it can be concluded that: 
• mB- and δE-based stabilizers provide the least 

overshoot during the first swing. 
• The performance of δE-based stabilizer is almost 

unaffected with loading conditions.  This ensures 
the robustness of this stabilizer. 

• At light loading, δE-based stabilizer is the most 
effective in damping low frequency oscillations. 
The performance of PSS, however, is degraded at 
this loading condition.  

In addition, the rotor angle response for a 6-cycle 
three-phase fault at light loading is shown in Fig. 8. This 
figure clearly shows that the δE-based stabilizer causes a 
substantial improvement in first swing stability over the 
other two stabilizers. 

Generally, these results confirm those conclusions 
drawn from SVD analysis and eigenvalue analysis 
results. 

VI. CONCLUSION 

In this paper, SVD has been employed to evaluate 
the EM mode controllability to PSS and the four UPFC 
control signals. It has been shown that the EM mode is 
most strongly controlled via δE for a wide range of 
loading conditions. In addition, SVD analysis has 
illustrated that the EM mode is poorly controlled 
through mE and δB.  

An optimization technique has been proposed to 
design the PSS and UPFC controllers individually. PSO 
has been utilized to search for the optimal controller 
parameter settings that optimize a nonlinear time-
domain objective function. Simulation results through 
nonlinear power system model have proved the 
conclusions drawn from linear SVD and eigenvalue 
analyses. 
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APPENDIX 

The test system parameters are: 
Machine: xd=1; xq=0.6; x�d=0.3; D=0; M=8.0; 
T�do=5.044; freq=60; v=1.05; 

 
Fig. 6. Speed response to 6-cycle fault disturbance for 
nominal loading 

 
Fig. 7. Speed response to 3-cycle fault disturbance for 
light loading 

 
Fig. 8. Rotor angle response to 3-cycle fault 
disturbance for light loading 

 
 



 

TABLE III  
SYSTEM EIGENVALUES AND DAMPING RATIOS WITH AND WITHOUT CONTROL AT DIFFERENT LOADING CONDITIONS 

Loading No Control PSS δE mB 
Nominal 

Light 
Heavy 

0.09± 3.52i,  -0.02 
-0.44± 3.35i,  0.13 
0.14± 3.39i,  -0.04 

-3.63± 13.86i, 0.25 
-1.04± 5.94i,   0.17 
-3.87± 13.53i, 0.27 

-4.17± 8.79i, 0.43 
-3.76± 7.98i, 0.43 
-3.84± 9.67i, 0.37 

-4.58± 12.23i, 0.35 
-4.43± 11.68i, 0.35 
-4.20± 12.61i, 0.32 

 
Exciter : KA=50; TA=0.05; Efd_max=7.3; Efd_min=-7.3;  
PSS: Tw=5; Ti_min=0.05; Ti_max=1.5; i=1,2,3,4; upss_max=0.2; 
upss_min=-0.2; 
DC voltage regulator: kdp=-10; kdi=0; 
Transmission Line: xtE=0.1; xBV=0.6; 
UPFC: xE=0.1; xB=0.1; Ks=1; Ts=0.05; Cdc=3; Vdc=2; 
mE_max=2; mE_min=0; mB_max=2; mB_min=0. 
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