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Abstract  —  In radar systems, detection performance is 
always related to target models and background 
environments. In time diversity systems, the probability of 
detection is shown to be sensitive to the degree of 
correlation among the target echoes. In this paper, we 
derive exact expressions for the probabilities of false alarm 
and detection of a pulse-to-pulse partially correlated target 
with 2K degrees of freedom for the Order Statistics 
Constant False Alarm Rate (OS-CFAR) detector. The 
analysis is carried out for the "non conventional time 
diversity system" (NCTDS) and multiple target situations. 
The obtained results are compared with the "conventional 
time diversity system" (CTDS). 

Index Terms — OS-CFAR detection, Time Diversity 
Systems, Conventional, Non conventional, Pulse-to-pulse 
correlation, Degrees of freedom. 
 

I. INTRODUCTION 
In automatic detection, received signals might fade due 
to target fluctuations. According to Swerling’s models, 
if only one pulse per scan hits a target, we cannot 
distinguish between cases I and II and cases III and IV. 
However, if multiple pulses are transmitted per antenna 
scan, the problem of detecting slow fluctuating targets 
(complete correlation) and fast fluctuating targets 
(complete decorrelation) can be easily overcome. 
Nevertheless, we should take into consideration the 
partial correlation of the target signal; otherwise the 
processor fails to predict the actual system performance. 
In other words, the more we know about the statistics of 
the target signal, the better the detection is. 

In the literature of CFAR detection, the echoed 
signals of the transmitted pulses are processed non 
coherently within the same receiver. The non coherent 
integration accumulates M pulses and processes them as 
an entity to form the noise level estimate. Dealing with 
either uncorrelated or partially correlated data samples, 
we often seek to improve detection while maintaining a 
constant false alarm rate. Several authors have 
considered different applications of the non coherent 
integration. Here, we only list a few of them [1-5]. In 
[1], Kanter has studied the detection performance of a 
noncoherent integration detector accumulating M-

correlated pulses from a Rayleigh target with two 
degrees of freedom. Complete correlation and complete 
decorrelation of the target returns yielding Swerling 
models I and II, respectively, were treated as extreme 
cases of the target correlation coefficient. The noise was 
assumed to be uncorrelated. Wiener [2] extended the 
work in [1] by deriving exact expressions for the 
probabilities of detection for partially correlated chi-
square targets with four degrees of freedom. In this case, 
the limiting bounds of complete correlation and 
complete decorrelation of the target returns yield the 
Swerling models III and IV. The work done in [1, 2] 
used a fixed threshold detection. It is known that radar 
detectors with fixed threshold can not maintain a CFAR, 
and thus adaptive threshold detection is considered. Hou 
[3] used the method of residues to evaluate exact 
formulas for the detection performance for the chi-
square family with 2K degrees of freedom.  
The idea of processing independently the received target 
pulses to yield preliminary decisions in distributed 
CFAR detection, was first suggested by Himonas and 
Barkat [4, 5]. They studied the case of partially 
correlated target returns with different architectures of 
time diversity and distributed CFAR detectors to 
minimize the effect of the correlation factor among the 
received target pulses. They called it "time diversity 
systems" referring to multiple-pulse systems. El 
Mashade [6, 7] has thoroughly developed this idea by 
considering the integration of all the individual noise 
level estimates. More precisely, as shown in Fig. 1, the 
reference samples of the individual pulse returns are 
ranked in an ascending order. Then, each ordered 
window is processed   by the suited   one-pulse order-
statistic algorithm. Finally, the obtained noise level 
estimates are added to get the overall background level. 
We call it "non conventional technique" with respect to 
the conventional non coherent integration technique. 
Consequently, for the sake of comparison, we shall 
adopt the terminology "conventional time diversity 
system" (CTDS) to refer to the non coherent integration 
and "non conventional time diversity system" (NCTDS) 
to refer to the technique used in [6, 7]. 
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Fig. 1 Decision Element: NCTDS OS-CFAR detector  

Of particular interest to radar applications is the 
presence of interfering targets in the reference cells, 
which is known to degrade the performance of CFAR 
detectors. To alleviate this problem, a lot of detectors 
have been proposed in the literature. The aim of these 
algorithms is to show how robust a CFAR detector can 
be in multiple target situations by taking into account 
the non homogeneity of the background either 
analytically or by simulation.  
 In summary, we observe that the work using the 
NCTDS did not show a comparison of the OS-CFAR 
detector with its corresponding detector for the CTDS in 
neither single nor multiple target situations.  Moreover, 
the two systems did not consider the general case of a 
pulse-to-pulse partially correlated chi-square target with 
2K degrees of freedom. To complete the study, we 
introduce a detailed detection analysis for a 
mathematical model representing the case of detecting a 
pulse-to-pulse chi-square partially correlated chi-square 
target with 2K degrees of freedom embedded in a pulse-
to-pulse Rayleigh and uncorrelated thermal noise.  
  The paper is organized as follows. In Section 2, we 
formulate the statistical model. In Section 3, we derive 

the exact false alarm probability Pfa. Then, in Section 4, 
we give the moment generating function (mgf) of the 
test cell under hypothesis H1 in terms of K and use it to 
derive the exact detection probability Pd. Next, in 
Section 5, by deriving detection curves, we show the 
performances of the detector. A conclusion is given in 
Section 6. 
 

II. STATISTICAL MODEL 
The received signal is processed by the in-phase and 
quadrature phase channels. Assuming a correlated chi-
square target with 2K degrees of freedom embedded in 
uncorrelated noise, the in-phase and quadrature phase 
samples { }ija  and { }ijb  at pulse i and range cell j, 
respectively, i=1, 2, 3, …, M and j=1, 2, 3, …, N, are 
observations from Gaussian random variables. M and N 
are the number of radar processed pulses and the 
number of reference range cells, respectively. Assuming 
that the total noise power is normalized to unity, the 
output of the (i, j) th cell, is  
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The thermal noise samples are assumed to be 
independent and identically distributed (IID) random 
variables with zero mean and variance 2

nσ  ( 2
nσ =1) 

from pulse-to-pulse and from cell-to-cell.  
The detection performance is based upon the 

statistics of q, which is given by 
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Extending the target model introduced in [2] to 2K 
degrees of freedom, we have 
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are, respectively, the magnitudes of the in-phase and the 
quadrature phase components of the complex target 
signal at pulse i, present in the test cell q. 2

ix  and 2
iy  

represents each the sum of the squares of K real 
Gaussian variables. K is called either the fluctuation 
parameter or the number of degrees of freedom. ia  and 

ib  represent the in-phase and quadrature phase samples 
of the uncorrelated thermal noise. The target signal is 
assumed to be independent from the thermal noise 
signal. The in-phase samples are assumed to be 
independent of the quadrature phase samples. A useful 
representation of the target signal vector, which will be 
used later in this paper, is 
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where, [ ]T
kM1kk  x,  ,x ⋅⋅⋅=X , [ ]T

kM1kk  y,  ,y ⋅⋅⋅=Y and 
k=1, 2,…, K . The M x 1 target in-phase vectors X1, 
X2,…, Xk and the quadrature phase vectors Y1,Y2, …,Yk 
are independent from each other but their respective 
components are correlated pulse-to-pulse. The K-block 
in-phase and quadrature phase target vectors X and Y of 
the correlated chi-square target model with 2K degrees 
of freedom are uncorrelated, but their respective 
components are correlated with a known correlation 
matrix tΛ . The random variables xik and yik (i=1, 2…, 
M) representing the target samples are assumed to be 
first-order Markov processes with zero mean and 
variance 2

tσ . Hence, the ( )thji, element of the covariance 
matrix of the target process tΛ  can be expressed as 
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According to Edrington's measurements, if M pulses 
hit a target, the return echoes from commonly 
encountered models are exponentially correlated. 

)T(exp tRt ωρ −= is the correlation coefficient between 
the pulse-to-pulse received target samples for a given k 
where tf  is the mean Doppler frequency of the target 

signal. To simplify the analysis, we assume that the 
target process is stationary and that the pulse repetition 
interval (PRI) TR is constant. Our model assumes that 
any value of 1K ≥  is realizable. The four Swerling 
cases (I, II) and (III, IV) correspond to K=1 and K=2, 
respectively. In this manner, we can model the partial 
correlation between pulses as in [1, 2]. Thus, for 
example, to model Swerling cases I and II, we should 
set K=1, but 1t =ρ  and 0t =ρ , respectively. 

The test cell q is then compared to the adaptive 
threshold TQ to make a decision H1 or H0, according to 
the following hypothesis test 

TQ q
0

1

H

H

<
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Q denotes the estimated background level, H0 denotes 
the absence of a target while H1 denotes the presence of 
a target. The probabilities of false alarm and detection 
of a CFAR detector can be obtained by using the 
contour integral [8], which can also be expressed in 
terms of the residue theorem as in [3] to yield 
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where res [.] denotes the residue. 
0is  (i0 = 1, 2, …) and 

1is  ( i1 = 1, 2, …) are, respectively,  the poles of the 

moment generating function (mgf) ( )s
0HqΦ  of the 

noise and the mgf (s)
1HqΦ  of the target plus noise, 

lying in the left-hand of the complex s-plane. ( )Ts−ΦQ  
is the mgf of the estimated background level evaluated 
at   s= -Ts. 

  
III. EVALUATION OF THE FALSE ALARM PROBABILITY 
In order to derive the exact expression for the Pfa, we 
must evaluate the moment generating function (mgf) 

( )s
0HqΦ  of the test cell q in the absence of a target and 

the mgf ( )sQΦ . As we stated earlier, the block diagram 
of the OS-CFAR integrating M pulses for the NCTDS is 
shown in Fig. 1. The mgf of q in the absence of a target 
is defined, in terms of the M x 1 noise vectors, as 
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 As the in-phase and quadrature phase samples of the 
noise are IID, therefore the joint probability density 
function (pdf) of A and B satisfies ( ) ( )BABA pp),(p =  
and )(p)(p BA = . )(p A is the joint Gaussian pdf of the 
in-phase noise vector with zero mean and identity 
covariance matrix which generates uncorrelated thermal 
noise samples [1] 
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Combining equations (9) and (10) and after some 
mathematical manipulations, the mgf of the cell under 
test can be expressed as 

( ) ( ) M
Hq s1s

0

−+=Φ                      (11) 

The poles of the mgf ( )s
0q/HΦ  of q under hypothesis H0 

are a simple pole at 1−=s  of multiplicity M lying in the 
left-hand s-plane. 

The overall background noise level q is estimated by 
taking the average over the M pulses as follows 

∑
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M
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The background noise level Qi of the OS-CFAR 
detector is estimated by the nth ranked sample taken 
among the N ordered cells [9] as 

    ( )nii qQ =      i=1, 2, …, M                  (13) 

Note that the value of n is the same for all processed 
pulses. It is shown that the best performance of the OS 
CFAR detector in multiple target situations is obtained 
for 4

3Nn = . As the mgf of Qi for i=1, 2, …, M is given 
in [8] and assuming that the Qi's are IID from pulse-to-
pulse, then the mgf of Q is   
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 The Pfa of the OS-CFAR detector can be evaluated 
by substituting equations (11) and (14) for s = -T s into 
equation (7). Then by using the partial-fraction 
expansion, we obtain 
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IV EVALUATION OF THE DETECTION PROBABILITY 

Now let us derive the exact expression for the detection 
probability. In doing this, we study the effect of the 
correlation coefficient tρ  of the target returns on the 
detection performance. The determination of the Pd 
given by equation (8) requires the knowledge of the 
mgf ( )s

1q/HΦ  of the test statistic q under H1 and the 
mgf ( )sQΦ  of the background noise level Q of the OS-
CFAR detector. 
 Taking into account that X and Y are independent, A 
and B are independent and that the noise signal is 
Gaussian, stationary and independent of the target 
signal, we can write the mgf of q in the presence of the 
target for any target model [2, as Eq. (7)], as 
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The target K-bloc vector X as defined in equation (4), 
has a multivariate Gaussian pdf, defined by 
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The K x K block diagonal covariance matrix Λ is 
defined as 

( )tt ΛΛΛ ...,,diag=                       (18) 

 Note that since 1−
tΛ exists then, 1−Λ also exists. 

 In order to find the mgf of the test statistic under H1, 
we  need  to  evaluate  equation  (16).  That is, we first 
define the pdf of the vector Xk, k=1, 2, …, K, as in [2]  

( )
( )








−= −
k

1
t

T
k

2
1

2
M 2

1exp
2

1p XΛX
Λ

Xk

tπ
        (19) 

Since the M x 1 target in-phase vectors X1, X2,…, Xk 
and quadrature phase vectors Y1, Y2, …,Yk are 
independent from each other, we introduce the pdf of  
the K-dimensional vector X  as a generalization of [2, as 
Eq. (10)] 
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From equation (4), we define also the norm of the 
vector X , i.e. 2X as  

k
T
k XXX ∑

=

=
K

k 1

2                            (21)                       

Inserting equation (17) into (16) and integrating over the 
Xk’s, we may write, by using equations (18) to (21)  
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If the target signal is assumed to be a stationary process, 
then tΛ  is a symmetric Toeplitz matrix with M distinct 
positive real eigenvalues denoted by iβ , i=1, 2, …, M. 
Therefore, the determinant which appears in (22) may 
be expressed as the product of its eigenvalues. 
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Note that the mgf of [3] given for chi-square targets 
with 2K degrees of freedom, is a special case of the mgf  
given by equation (23) for partially correlated chi-
square target with 2K degrees of freedom.  
 The Pd of the OS-CFAR detector can be found by 
inserting equations (14) for s = -T s and (23) into 
equation (8). Then by using the partial-fraction 
expansion, we get 
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V. SIMULATION RESULTS 

To evaluate the detection performance and the false 
alarm properties of the proposed model, we assume a 
reference window size of N=16 and design Pfa=10-4. 
First, we compute the threshold multiplier T of the OS-

(15) 

(24) 



CFAR detector (n=12) for the NCTDS using equation 
(15) to achieve the prescribed Pfa. Then, for the same 
assigned Pfa, we obtain by simulation the threshold 
multiplier of the corresponding detector for the CTDS. 
The Pd for the NCTDS is computed using equation (24) 
while the Pd for the CTDS is obtained by simulation. In 
both cases, the detection performance of the detector for 
a design Pfa, depends upon several parameters. Our 
attention is focused on the signal-to-noise ratio (SNR), 
the target correlation coefficient tρ , the number of 
processed pulses M and the number of degrees of 
freedom K with an emphasis on the problem of multiple 
target situations.  

In the absence of interfering targets, Fig. 2 shows the 
probability of detection against SNR. We can observe 
from this figure that there is a complete overlap of the 
curves representing the CTDS and the NCTDS. Note 
that a target correlation going from 1=tρ  to 0=tρ  
helps the detection. The greater the K, the more 
insensitive to tρ  the detection becomes. The Swerling's 
cases are the extreme limits represented by 1=tρ  
representing complete correlation of the target, 
and 0=tρ  representing complete decorrelation.  

In all forthcoming experiments, we assume that more 
than one target may be present. They are all of the same 
nature (primary and secondary targets). The 
interference-to-noise ratio is noted INR and we assume 
that INR=SNR. For the same conditions as above, we 
add four interferers. Inspection of Fig. 3 reveals that the 
detector is more sensitive to the presence of interfering 
targets for the NCTDS than for the CTDS. The CFAR 
loss between the two systems becomes more significant 
when K increases.  
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Fig. 2 Probability of detection of the CTDS and the 
NCTDS OS-CFAR detector against SNR in the absence of 
interfering targets for N=16, tρ =0, 0.3, 0.5, 0.8 and 1, NI=0, 
M=2 and   Pfa=10-4. 
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Fig. 3 Probability of detection of the CTDS and the 
NCTDS OS-CFAR detector against SNR for N=16, tρ =0, 
0.3, 0.5, 0.8 and 1, NI=4, M=2 and   Pfa=10-4. 
 
Next, we examine the effect of tρ , and the number of 
interferers (NI), respectively, on the detectability of 
correlated chi-square targets with 2K degrees of 
freedom at SNR=INR=5dB for the same N and the same 
Pfa. We observe in Figs. 4 and 5 that in the absence of 
interferers, the detector for the two considered systems, 
CTDS and NCTDS, have the same performance. The 
presence of multiple interferers affects more the detector 
for the NCTDS than the corresponding detector for the 
CTDS. This is primarily due to the fact that the spikes 
present in the individual reference cells are compensated 
from one pulse to another with the flats present in the 
corresponding cells. The CTDS takes then full 
advantage of this compensation mechanism as the 
number of interfering targets increases. As expected, the 
OS-CFAR detector for the two systems becomes 
vulnerable when the number of interferers exceeds four. 
This agrees with the results obtained for the one pulse 
detector treated in [8]. Nevertheless, the detector 
performs better for the NCTDS than for the CTDS.  In 
Fig. 4, we plot the Pd for the two systems in terms of tρ . 
As it is well-known, an increase in the target correlation 
coefficient degrades the detection for all kind of 
detectors. The case NI=5 indicates that the detector for 
both systems can not handle anymore interfering targets. 
 To investigate more interesting operational cases, we 
test the robustness of the detector in the presence of 
multiple interfering targets in the range cells. Fig. 5 
shows the Pd in terms of NI. Note that, although the 
detector for the CTDS for which the detection degrades 
seriously for NI ≥  5, independently of the number of 
processed pulses M, the corresponding detector for the 
NCTDS degrades smoothly. Finally, observe that when 



M is sufficiently large, the detection improves 
significantly for a moderate NI.  
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VI. SUMMARY AND CONCLUSION 

In this paper, we analyzed and compared the 
performance of the OS-CFAR detector using two 
different noncoherent integration systems for the 
detection of a pulse-to-pulse partially correlated target 
with 2K degrees of freedom immersed in a pulse-to-
pulse Rayleigh uncorrelated noise and multiple target 
situations. The obtained results showed that their 

performance are very similar in the absence of 
interfering targets, in which case the simple 
mathematics induced by the NCTDS makes it a good 
alternative since the problem of large processing time 
required can be easily overcome by using new 
generation high speed processors. When the number of 
interferers does not exceed the number of trimmed 
samples and due to its compensation mechanism, the 
CTDS is more robust than the NCTDS. However, for 
more interferers, the NCTDS exhibits better detection 
performance. 
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