
A Multiprocessor Framework for Rapid-Prototyping and
Evaluation of Soft Transceivers

Muhammad Salman Asif1, Mohammad Omer2, Dr. Amjad Luna3, Dr. Noor. M. Sheikh4

Al-Khwarizmi Institute of Computer Sciences, UET Lahore, 1,4Department of Electrical
Engineering, UET Lahore, 3Department of Computer Science, LUMS

E-mails: salman@uet.edu.pk, omer@kics.edu.pk, amjad@lums.edu.pk, deanee@uet.edu.pk

Abstract — Recent years have seen rapid evolution in

the architectures being explored for realizing high-speed
software-defined radios. There is, however, a distinct need
for a low-cost programmable platform where algorithms
for base-band transceivers can be rapidly prototyped and
tested with real-world data, streaming in from diverse
sources of telecommunication traffic. This paper explores
an analytical method for laying out such a generic
platform. It investigates the constraints involved in
realizing such a platform, and the minimum functionality
needed within the solution so as to provide adequate
scalability to allow the implementation of a wide variety of
communication algorithms. The paper concludes with a
case study of a multi-channel communication system that
has been successfully implemented on the proposed
platform, highlighting the performance benchmarks it had
to meet in order to prove suitable for the task of
communication system evaluation.

Index Terms — MIPS, DSP, Analog Front End (AFE),
Buffers, Data Converters, PAM (pulse amplitude
modulation)

I. INTRODUCTION

With the low-cost availability of increasingly higher
performance programmable devices, the choice of an
implementation platform for communication systems is
gradually shifting towards DSPs and FPGAs. This trend
is also being fuelled by the crucial need to
accommodate, on a single device, a host of competing,
divergent standards that mark the evolutionary path
along 3G and beyond. Soft transceiver architectures
have, therefore, evolved significantly over the past few
years. However, almost all of the activity in this area is
exclusively focused on applications related to 3rd and
4th generation cellular systems. There is a sizable
segment among the rest of the communication
applications that is not as demanding as the 3G/4G
systems. Such applications include TDMA satellite
modems, mobile and portable radios, telemetry systems,
remote data acquisition, and so on. Employing 3G/4G
architectures for such applications would certainly be an
over-kill.

When a soft transceiver makes a leap from its
simulation environment to the real world, several
pressing issues come into play immediately. These

include finite word-length effects and interfacing with
the real-time data sources and sinks. The former can be
addressed through the wide array of configurable and
programmable logic available to the system designer.
There are, however, two main issues associated with the
latter: the type of interface that will feed data to the
transceiver, and the analog interface that will carry the
up sampled signal from the transceiver onto a real
channel. There is, thus, a distinct need for low-cost
generic programmable platforms where algorithms for
base-band processing of software radios could be cost-
effectively prototyped and tested in an end-to-end
system environment.

The rapid prototyping architecture proposed in the
rest of this paper attempts to address these problems.
The proposed system lends itself easily to rapid
prototyping of a large class of contemporary
transceivers. We have realized the proposed system and
have used it for evaluating several communication
systems, the results of which find a mention at the end
of this work

II. SYSTEM COMPONENTS

In order to identify the requirements for prototyping
system, we first need to look into the internal details of
what forms a base-band transceiver.

Fig. 1. A Generic System Layout

The Fig. 1 shows the skeleton transceiver that can

theoretically implement all communication methods at
the base-band level. All that the system needs is a digital
interface from which the data pours into the system. The

Interface Communication
Algorithm

Buffer

Buffer DAC AFE

 Data out

 Data in

interface data needs to be buffered before being relayed
into the main computational engine. It is not advisable
to waste the execution bandwidth of the engine in
fetching data sample by sample [1][2]. A cushion is
therefore provided in the design, where the data can be
buffered before the processor fetches the same in a long
haul. It can be seen that the buffers encompass the
processor at both ends. The system finally terminates in
a DAC which is the last line in the digital chain and the
analog data originates thereafter. Analog front end is
able to provide the needed filtering and differential drive
wherever required [3][10].

III. COMMUNICATION SYSTEM CONSIDERATIONS

In a typical communication system, the receiver chain
is made up of a number of typical building blocks with a
few features differing here and there. In order to narrow
down our focus, we begin by looking at a common
receiver architecture which employs pulse amplitude
modulation (PAM). A base-band PAM signal would
generally be represented by

 ()∑
∞

−∞=
−=

n snTtgnAts)((1)

Where An denotes the set of M possible amplitudes
corresponding to M=2k possible k-bit blocks of
symbols. The waveform s(t) is a real-valued signal pulse
whose shape influences the spectrum of the transmitted
signal, and Ts is the symbol interval.

In a PAM architecture, the modulation is simple and
does not involve a complicated data processing chain. A
typical M-ary PAM modulator with an uncoded data-
rate of R bps takes up the input bit-stream, breaks it into
k-bit blocks and then forms M=2k PAM symbols. After
the formation of PAM symbols, what is left is to use
interpolation to over sample the PAM symbols and use
transmit filtering to shape the symbols in order to limit
the bandwidth of the resulting signal [4]. The pulse
shaping is most commonly done through filtering the
PAM symbols with a raised cosine filter of the form












































 −
+=

∆

0

2
)(

cos1
2
1

1

)(1

f
ff

fH e

π

for

Bf

Bff

ff

>

<<

<

1

1
 (2)

where B is the absolute bandwidth,

f1 = fo - f∆

f∆ = B – fo,
fo is the 6-dB bandwidth of the filter.
The rolloff factor is defined by r = f∆ / fo

It can be seen that the pulse shaping filter converts the
ideal pulses to finite bandwidth pulses that can easily
negotiate with a band limited channel and fulfill Nyquist
criterion for ISI prevention.

The receiver structure is much more complex; not
only in terms of the nature of signal processing involved
but more importantly because many different receiver
architectures may be used depending on several factors
that include; needed data throughput, level of reliability,
and the nature of the application. We will however
employ a commonly used receiver architecture that
provides all the necessary functionality required of a
typical non-fading wireless link. If a PAM modulation
scheme has been employed, the most important task left
for the receiver is the carrier phase recovery and the
baud loop timing recovery [5]. If these are accomplished
successfully in the presence of additive white Gaussian
noise, the receiver can then employ a wide array of
signal processing and coding techniques to recover the
signal reliably, thus covering the wide spectrum of
possibilities mentioned above.

IV. HARDWARE MAP OF THE TRANSCEIVER

Having discussed both the algorithms and the system
hardware, we are now ready to look at the dynamics of
the system in detail. Before going to look at how we
may be able to develop architecture, it would certainly
help if we can list the desirable features of our layout. A
look at the transceiver requirements will bring out the
following facts:

1. Provision for data-link layer processing.
2. Flexibility to allow changes in the main

communication algorithms.
3. A flexible back-end with an interface structure

that can allow data to pour in through a wide
variety of sources and interfaces.

4. Configurable glue that can take care of the
inter-processor communication.

5. Appropriate data buffering so as to conserve
I/O bandwidth of the main computational
engine.

6. Configurable clocking strategy in order to drive
various processing engines as well as
determine the data flow within processor.

7. A suitable analog front-end that has
configurable bandwidth in order to allow a
large class of signals through it.

In the light of the requirements that have been spelled

above we propose a generic transceiver architecture that
fulfills them.

Fig. 2. Component Layout and Connectivity

The Fig. 2 shows that the scheme is a three tier

approach to the system design which closely follows the
architecture mentioned in the beginning. In effect, the
processing horsepower resides within the DSP CPU,
and the buffering operations have been accomplished by
enclosing the processor within a microcontroller and an
FPGA. Several virtues of the design however need a
close mention. They are listed below:

1. A high end microcontroller like the ones
carrying an ARM core are most suited towards
the front-end data processing as they have a
rich set of peripherals that can be used to tap
data in from various standard interfaces.

2. FPGA structure is a convenient method for
housing a FIFO type buffer because it always
comes equipped with memory banks [6].

3. Driving all clocking interfaces through a single
device of FPGA ensures that the system timing
is maintained despite clock jitters and oscillator
wanderings.

It is apparent that the proposed architecture is capable
of providing the true functionality of a transceiver with
an onboard solution. Such a transceiver is capable of
adapting to various data rates and can allow several
communication systems to be successfully implemented.
It must be mentioned that a typical FPGA has the ability
to take several different clocks at the input and is able to
divide them up with a wide range of integer and
fractional factors so that a number of high slew clocks
can be delivered at general- and special- purpose I/O
pins of the device. Such latitude of clock provision
through the use of delay locked loops inside the FPGA
is instrumental in ensuring that the transceiver can
provide clocks for driving the system at arbitrary rates.
Through the use of this allowance, we can drive our data
converters at almost any rate dictated by differing
system requirements.

The use of a programmable digital signal processor
within the solution provides for the ease of
communication system implementation [11]. A powerful
DSP would form the heart of the system yet does not
interface directly to the external environment on any of

its ends. At one end, it captures data from a
microcontroller which is fetching the same from real
world traffic. At the other end it sinks its data into a
FIFO buffer which relays it sequentially to data
converters. This structure has been crafted to minimize
the I/O bandwidth required for the DSP. The DSP is
now free to take up the computational load of a
complete communication system. The communication
algorithms coupled with their implementation strategies
will now determine the likelihood of successful
prototyping. We therefore give an architectural highlight
of these in the next section.

V. RECEIVER ARCHITECTURE

A communication receiver would severely encumber
the implementation platform due to the complexity that
accompanies it. Many of the receiver architectures
however, share a common set of tasks that need to be
successfully accomplished.

V-a. A Typical QAM Receiver

We look at a typical QAM receiver before delving
into the choice of hardware platform that it will dictate;

Fig. 3. Receiver Model

The receiver in the Fig. 3 employs the simplest
possible architecture for data recovery. In order to keep
the discussion simple, many important symbolic
notations have been omitted like that of real and
complex data paths. For the brevity of discussion the
diagram has also omitted the modes (decision directed

Decimate by N
Fs*M/N

Digitally
adjusted

Interpolator

Phase
Derotator

Decimate
&

Equalize

Slicer

Timing Error
Detector

Phase error
detect

Data at Fs

data streaming in
over-sampled Fs*M

DSP
processor

Micro-
controller

FPGA

Oscillator

DAC

Out
Clk

Processor clocks
Data

to
AFE

Interface driving clock

Digital
Interface

Interface

Receiver Front end

and training) in which the receiver will be called upon to
operate. The front end of the receiver is sampling the
data at a rate faster than the symbol rate. This of course
is essential for the proper working of timing recovery
loop of the receiver [6]. But the rate of over sampling
will be dictated by the type of algorithm being employed
for the detection of timing and phase errors. Generally,
the sampling frequency Fsamp is four times that of
symbol frequency Fsym

V-b. A Generic Communication Receiver

A standard QAM receiver implementation has been
detailed above. It can be easily inferred that several
other receiver structures like those of QPSK, PSK,
PAM, and all the M-ary versions of the above will
follow the same scheme as laid out in the receiver
model. As the signal constellation gets more and more
dense, the change only occurs in the structure of the
decision device (slicer). A slicer used for a four point
QAM will have a simple single threshold decision
structure, while a multipoint QAM receiver will have a
greater number of slicer thresholds to compare the
received signal against. Principally, the same underlying
receiver architecture can suffice for all these modulation
schemes. In the instance of high density constellation
schemes receiver will be more sensitive to phase and
timing errors. Apart from the need to have more robust
timing and phase recovery algorithms in place, the
receiver for a large class of modulation schemes will
remain essentially unchanged [8]. We, therefore, stress
the notion that evaluation and suitable performance of
the receiver for a given QAM scheme will automatically
render it suitable for the prototyping of a large class of
communication receivers.

In the light of this architecture we can observe that a
receiver needs to be implemented on a platform that
allows the various filtering operations to happen quickly
enough in real time simultaneously, and can provide for
the complex feedback structure of the receiver. We have
selected a TMS320C5510 for the task of implementing
this engine. The DSP is customized for intensive signal
processing operations typically found in communication
systems and can provide a powerful mix of standard
sum of products implementation plus a very flexible
decision structure to implement feedback paths.

VI. LOAD CALCULATION

Texas Instrument’s DSP has been employed as the
major engine for implementing the communication
algorithms. TMS320C5510 is a fixed point processor
loaded with a dual MAC unit for intensive DSP
applications [9]. The processor has a fragmented
memory with six simultaneous access busses for quick
data access. The implementation of several different
receiver architectures has proven the computational

superiority of the engine. Following is a brief summary
of the results obtained so far with the engine at a clock
frequency of 200 MHz. The table lists down operation
on a chunk of data which contains 32 bits of digital data.

Table 1 Performance Sheet

A simple calculation will then lead us to explore the

DSP data rates which can be successful prototyped.
Suppose that the digital data stream has been generated
by a standard 64kbps channel. The transceiver
computation time would be the sum of transmitter and
receiver execution plus some looping overhead. For the
present we neglect the overhead involved. Therefore
the ability of DSP to handle the same would be,

Traffic generation time for 32 bits = 1/64000 *32 sec
DSP computation time = 1/200x106 * 16600 (sum of

transmit and receive clock cycles without error coding)

For successful real time operation

DSP computation time > Traffic generation time

If we repeat the above calculations for a varying number
of data rates, it would be observed that our DSP is well
capable of handling 4/8 voice channels of standard 64
Kbps with/without channel coding. However, the
figures quoted are not the most optimized ones and
further work is continuing in order to bring them to the
level of being benchmarked with TI’s standard
implementations.

VII. HARNESS DESIGN

The harness of the system induces a point where
successful design decisions will distribute the
computational load on each individual component as
well as minimize the problems relating to data flow
hierarchy. We propose a mixed serial/parallel
architecture where a DSP communicates with controller
on a serial link and communicates with the FPGA on a

Algorithm Process Time in
CPU Cycles

4 point QAM receiver with hard
decision slicer 13000

4 point QAM transmitter with a
transmit filter of 41 Taps 3600

8 PSK trellis coded decoder with
hard decision trace back 8000

8 PSK trellis coded encoder 200

parallel highway. The figure below illustrates the
interfaces deployed

Fig. 4. Interface Specifics

As can be seen in the Fig. 4, the DSP is interfaced

through a Multi channel Buffered Serial Port (McBSP)
to the microcontroller interface and through an external
memory interface to the FIFO residing within the FPGA
[6][13][14]. The types of interfaces employed are design
decisions which give us the following key advantages.

1. The raw data traffic being generated and
modified by the link-layer exists in a highly
packed version of raw bits, all of which has to
undergo formatting and base-band processing.
The magnitude of the data dictates that a high
speed serial link will adequately serve the
purpose

2. The data being spewed out of the DSP is a
modulated one and has to go through a data
converter. The data therefore exists as digital
samples of an analogue waveform which will
be generated upon DAC interpolation. Each
sample therefore resides with a certain number
of precision bits as a separate entity. The sheer
volume of the data and its character dictates
that the same should be relayed over a parallel
channel configured to the width of each data
sample

We, therefore, can have our interface judgments
supported by the achievable data rates of both the
interfaces. McBSP can typically handle a high rate E1
stream as well as higher multiplexed versions of the
same. EMIF on the other hand can transmit as fast as the
peripheral clock which has a maximum operation
frequency of half the processor clock.

VIII. CONCLUSION

We have demonstrated the need for a rapid
prototyping platform for digital transceivers and
discussed the skeleton of a generic architecture. The
generic architecture was then fine-tuned to absorb
requirements posed by different system level
constraints. We finally emerged with a home-brewn
multiprocessor framework that has been implemented
and has demonstrated successful prototyping
realizations. We then laid out the performance of

standard receiver implementations on the proposed
platform and compared their feasibility by assuming a
standard 64 kbps traffic generator. The paper has
presented an integration scheme for successfully
weaving all processors into a synergetic framework
geared towards communication applications

ACKNOWLEDGEMENT

We thank Texas Instruments for providing evaluation
kits for DSP benchmarking as well as ATMEL limited
for supporting the work with the grant of ARM 7 RISC
machine and the evaluation boards.

REFERENCES
[1] Kopetz and Hermann, “Real-Time systems, design

principles for distributed embedded applications”
Springer Verlag publishing, volume 395, issue, pp. 35-
36, 2002.

[2] Jefferey H. Reed, Software Radio: A Modern Approach
to Radio Engineering. Prentice Hall International, 2002

[3] Analog Devices technical staff, The ADSP 21xxx
applications handbook, ADI Inc, 1998.

[4] Leon W Couch, Digital and Analog Communication
Systems, Prentice Hall International, 2001.

[5] Edward Lee and David Messerchmit, Digital
Communications, Kluwer Academic Press, 2000 pp 250-
255.

[6] XILINX Inc, SPARTAN ii Device Data sheet, XLINX
Inc, 2002.

[7] Dimitrios Efstathiou, Jose Fridman, and Zoran Zvonar,
“Recent Developments in Enabling Technologies for
Software Defined Radio” IEEE Communications
Magazine, August 1999

[8] Proakis, John G., Digital Communications, 4rd Ed.,
McGraw-Hill 2001.

[9] Texas Instruments Inc, C55xx programmers’ reference,
TI 2003.

[10] Joseph Mitola, III, “Software Radio Architecture: A
Mathematical Perspective” IEEE Journal on Selected
Areas in Communications, vol. 17, no. 4, pp. 514-538,
April 1999.

[11] Kondo, Matsuo and Suzuki. “A Software Defined
Architecture Concept for Telecommunication Information
Systems” ICC94, (NY: IEEE Press, 1994)

[12] Chris Dick, Fred Harris and Michael Rice. “FPGA
Implementation of Carrier Synchronization for QAM
Receiver” Kluwer Publisher - Journal of VLSI Signal
Processing 36, 57-71, 2004.

[13] S. Srikanteswara, J. H. Reed, P. Anthanas, and R. Boyle,
“A Software Radio Architecture for Reconfigurable
Platform,” IEEE Communications Magazine, vol. 38, no.
2, pp.140-147, February 2000.

[14] J. Mitola, “The Software Radio Architecture“, IEEE
Communications Magazine, vol. 33, no. 5, pp. 26-38,
May 1995

DSP

TMS320xx McBSP Port EMIF

Interrupt from
the FPGA FIFO

Interrupt from
the

microcontroller

