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Abstract  —  Recent years have seen rapid evolution in 

the architectures being explored for realizing high-speed 
software-defined radios. There is, however, a distinct need 
for a low-cost programmable platform where algorithms 
for base-band transceivers can be rapidly prototyped and 
tested with real-world data, streaming in from diverse 
sources of telecommunication traffic. This paper explores 
an analytical method for laying out such a generic 
platform. It investigates the constraints involved in 
realizing such a platform, and the minimum functionality 
needed within the solution so as to provide adequate 
scalability to allow the implementation of a wide variety of 
communication algorithms. The paper concludes with a 
case study of a multi-channel communication system that 
has been successfully implemented on the proposed 
platform, highlighting the performance benchmarks it had 
to meet in order to prove suitable for the task of 
communication system evaluation.  

Index Terms  —  MIPS, DSP, Analog Front End (AFE), 
Buffers, Data Converters, PAM (pulse amplitude 
modulation)  

I. INTRODUCTION 

With the low-cost availability of increasingly higher 
performance programmable devices, the choice of an 
implementation platform for communication systems is 
gradually shifting towards DSPs and FPGAs. This trend 
is also being fuelled by the crucial need to 
accommodate, on a single device, a host of competing, 
divergent standards that mark the evolutionary path 
along 3G and beyond. Soft transceiver architectures 
have, therefore, evolved significantly over the past few 
years. However, almost all of the activity in this area is 
exclusively focused on applications related to 3rd and 
4th generation cellular systems. There is a sizable 
segment among the rest of the communication 
applications that is not as demanding as the 3G/4G 
systems. Such applications include TDMA satellite 
modems, mobile and portable radios, telemetry systems, 
remote data acquisition, and so on. Employing 3G/4G 
architectures for such applications would certainly be an 
over-kill.  

When a soft transceiver makes a leap from its 
simulation environment to the real world, several 
pressing issues come into play immediately. These 

include finite word-length effects and interfacing with 
the real-time data sources and sinks. The former can be 
addressed through the wide array of configurable and 
programmable logic available to the system designer. 
There are, however, two main issues associated with the 
latter: the type of interface that will feed data to the 
transceiver, and the analog interface that will carry the 
up sampled signal from the transceiver onto a real 
channel. There is, thus, a distinct need for low-cost 
generic programmable platforms where algorithms for 
base-band processing of software radios could be cost-
effectively prototyped and tested in an end-to-end 
system environment.  

The rapid prototyping architecture proposed in the 
rest of this paper attempts to address these problems. 
The proposed system lends itself easily to rapid 
prototyping of a large class of contemporary 
transceivers. We have realized the proposed system and 
have used it for evaluating several communication 
systems, the results of which find a mention at the end 
of this work  

II. SYSTEM COMPONENTS 

In order to identify the requirements for prototyping 
system, we first need to look into the internal details of 
what forms a base-band transceiver. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. A Generic System Layout 
 
The Fig. 1 shows the skeleton transceiver that can 

theoretically implement all communication methods at 
the base-band level. All that the system needs is a digital 
interface from which the data pours into the system. The 
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interface data needs to be buffered before being relayed 
into the main computational engine. It is not advisable 
to waste the execution bandwidth of the engine in 
fetching data sample by sample [1][2]. A cushion is 
therefore provided in the design, where the data can be 
buffered before the processor fetches the same in a long 
haul. It can be seen that the buffers encompass the 
processor at both ends. The system finally terminates in 
a DAC which is the last line in the digital chain and the 
analog data originates thereafter. Analog front end is 
able to provide the needed filtering and differential drive 
wherever required [3][10]. 

III. COMMUNICATION SYSTEM CONSIDERATIONS 

In a typical communication system, the receiver chain 
is made up of a number of typical building blocks with a 
few features differing here and there. In order to narrow 
down our focus, we begin by looking at a common 
receiver architecture which employs pulse amplitude 
modulation (PAM). A base-band PAM signal would 
generally be represented by  

 ( )∑
∞

−∞=
−=

n snTtgnAts )(  (1) 

Where An denotes the set of M possible amplitudes 
corresponding to M=2k possible k-bit blocks of 
symbols. The waveform s(t) is a real-valued signal pulse 
whose shape influences the spectrum of the transmitted 
signal, and Ts is the symbol interval.  

In a PAM architecture, the modulation is simple and 
does not involve a complicated data processing chain. A 
typical M-ary PAM modulator with an uncoded data-
rate of R bps takes up the input bit-stream, breaks it into 
k-bit blocks and then forms M=2k PAM symbols. After 
the formation of PAM symbols, what is left is to use 
interpolation to over sample the PAM symbols and use 
transmit filtering to shape the symbols in order to limit 
the bandwidth of the resulting signal [4]. The pulse 
shaping is most commonly done through filtering the 
PAM symbols with a raised cosine filter of the form 
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where B is the absolute bandwidth,  

f1 = fo - f∆  

f∆ = B – fo,   
fo is the 6-dB bandwidth of the filter.  
The rolloff factor is defined by r = f∆ / fo 

It can be seen that the pulse shaping filter converts the 
ideal pulses to finite bandwidth pulses that can easily 
negotiate with a band limited channel and fulfill Nyquist 
criterion for ISI prevention. 

The receiver structure is much more complex; not 
only in terms of the nature of signal processing involved 
but more importantly because many different receiver 
architectures may be used depending on several factors 
that include; needed data throughput, level of reliability, 
and the nature of the application. We will however 
employ a commonly used receiver architecture that 
provides all the necessary functionality required of a 
typical non-fading wireless link. If a PAM modulation 
scheme has been employed, the most important task left 
for the receiver is the carrier phase recovery and the 
baud loop timing recovery [5]. If these are accomplished 
successfully in the presence of additive white Gaussian 
noise, the receiver can then employ a wide array of 
signal processing and coding techniques to recover the 
signal reliably, thus covering the wide spectrum of 
possibilities mentioned above. 

IV. HARDWARE MAP OF THE TRANSCEIVER 

Having discussed both the algorithms and the system 
hardware, we are now ready to look at the dynamics of 
the system in detail. Before going to look at how we 
may be able to develop architecture, it would certainly 
help if we can list the desirable features of our layout. A 
look at the transceiver requirements will bring out the 
following facts:  

 
1. Provision for data-link layer processing.   
2. Flexibility to allow changes in the main 

communication algorithms. 
3. A flexible back-end with an interface structure 

that can allow data to pour in through a wide 
variety of sources and interfaces. 

4. Configurable glue that can take care of the 
inter-processor communication. 

5. Appropriate data buffering so as to conserve 
I/O bandwidth of the main computational 
engine. 

6. Configurable clocking strategy in order to drive 
various processing engines as well as 
determine the data flow within processor. 

7. A suitable analog front-end that has 
configurable bandwidth in order to allow a 
large class of signals through it. 

 
In the light of the requirements that have been spelled 

above we propose a generic transceiver architecture that 
fulfills them. 

 



 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Component Layout and Connectivity 

 
The Fig. 2 shows that the scheme is a three tier 

approach to the system design which closely follows the 
architecture mentioned in the beginning. In effect, the 
processing horsepower resides within the DSP CPU, 
and the buffering operations have been accomplished by 
enclosing the processor within a microcontroller and an 
FPGA. Several virtues of the design however need a 
close mention. They are listed below: 

1. A high end microcontroller like the ones 
carrying an ARM core are most suited towards 
the front-end data processing as they have a 
rich set of peripherals that can be used to tap 
data in from various standard interfaces. 

2. FPGA structure is a convenient method for 
housing a FIFO type buffer because it always 
comes equipped with memory banks [6]. 

3. Driving all clocking interfaces through a single 
device of FPGA ensures that the system timing 
is maintained despite clock jitters and oscillator 
wanderings. 

It is apparent that the proposed architecture is capable 
of providing the true functionality of a transceiver with 
an onboard solution. Such a transceiver is capable of 
adapting to various data rates and can allow several 
communication systems to be successfully implemented. 
It must be mentioned that a typical FPGA has the ability 
to take several different clocks at the input and is able to 
divide them up with a wide range of integer and 
fractional factors so that a number of high slew clocks 
can be delivered at general- and special- purpose I/O 
pins of the device. Such latitude of clock provision 
through the use of delay locked loops inside the FPGA 
is instrumental in ensuring that the transceiver can 
provide clocks for driving the system at arbitrary rates. 
Through the use of this allowance, we can drive our data 
converters at almost any rate dictated by differing 
system requirements.  

The use of a programmable digital signal processor 
within the solution provides for the ease of 
communication system implementation [11]. A powerful 
DSP would form the heart of the system yet does not 
interface directly to the external environment on any of 

its ends. At one end, it captures data from a 
microcontroller which is fetching the same from real 
world traffic. At the other end it sinks its data into a 
FIFO buffer which relays it sequentially to data 
converters. This structure has been crafted to minimize 
the I/O bandwidth required for the DSP. The DSP is 
now free to take up the computational load of a 
complete communication system. The communication 
algorithms coupled with their implementation strategies 
will now determine the likelihood of successful 
prototyping. We therefore give an architectural highlight 
of these in the next section. 

V. RECEIVER ARCHITECTURE 

A communication receiver would severely encumber 
the implementation platform due to the complexity that 
accompanies it. Many of the receiver architectures 
however, share a common set of tasks that need to be 
successfully accomplished. 

V-a. A Typical QAM Receiver 

We look at a typical QAM receiver before delving 
into the choice of hardware platform that it will dictate;  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Receiver Model 
 

The receiver in the Fig. 3 employs the simplest 
possible architecture for data recovery. In order to keep 
the discussion simple, many important symbolic 
notations have been omitted like that of real and 
complex data paths. For the brevity of discussion the 
diagram has also omitted the modes (decision directed 
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and training) in which the receiver will be called upon to 
operate. The front end of the receiver is sampling the 
data at a rate faster than the symbol rate. This of course 
is essential for the proper working of timing recovery 
loop of the receiver [6]. But the rate of over sampling 
will be dictated by the type of algorithm being employed 
for the detection of timing and phase errors. Generally, 
the sampling frequency Fsamp is four times that of 
symbol frequency Fsym 

V-b. A Generic Communication Receiver 

A standard QAM receiver implementation has been 
detailed above. It can be easily inferred that several 
other receiver structures like those of QPSK, PSK, 
PAM, and all the M-ary versions of the above will 
follow the same scheme as laid out in the receiver 
model. As the signal constellation gets more and more 
dense, the change only occurs in the structure of the 
decision device (slicer). A slicer used for a four point 
QAM will have a simple single threshold decision 
structure, while a multipoint QAM receiver will have a 
greater number of slicer thresholds to compare the 
received signal against. Principally, the same underlying 
receiver architecture can suffice for all these modulation 
schemes. In the instance of high density constellation 
schemes receiver will be more sensitive to phase and 
timing errors. Apart from the need to have more robust 
timing and phase recovery algorithms in place, the 
receiver for a large class of modulation schemes will 
remain essentially unchanged [8]. We, therefore, stress 
the notion that evaluation and suitable performance of 
the receiver for a given QAM scheme will automatically 
render it suitable for the prototyping of a large class of 
communication receivers.    

In the light of this architecture we can observe that a 
receiver needs to be implemented on a platform that 
allows the various filtering operations to happen quickly 
enough in real time simultaneously, and can provide for 
the complex feedback structure of the receiver. We have 
selected a TMS320C5510 for the task of implementing 
this engine. The DSP is customized for intensive signal 
processing operations typically found in communication 
systems and can provide a powerful mix of standard 
sum of products implementation plus a very flexible 
decision structure to implement feedback paths. 

VI. LOAD CALCULATION 

Texas Instrument’s DSP has been employed as the 
major engine for implementing the communication 
algorithms. TMS320C5510 is a fixed point processor 
loaded with a dual MAC unit for intensive DSP 
applications [9]. The processor has a fragmented 
memory with six simultaneous access busses for quick 
data access. The implementation of several different 
receiver architectures has proven the computational 

superiority of the engine. Following is a brief summary 
of the results obtained so far with the engine at a clock 
frequency of 200 MHz. The table lists down operation 
on a chunk of data which contains 32 bits of digital data. 

 

 
Table 1 Performance Sheet 

 
A simple calculation will then lead us to explore the 

DSP data rates which can be successful prototyped. 
Suppose that the digital data stream has been generated 
by a standard 64kbps channel. The transceiver 
computation time would be the sum of transmitter and 
receiver execution plus some looping overhead. For the 
present we neglect the overhead involved.  Therefore 
the ability of DSP to handle the same would be, 

 
Traffic generation time for 32 bits = 1/64000 *32 sec 
DSP computation time   = 1/200x106 * 16600 (sum of 

transmit and receive clock cycles without error coding) 
 
For successful real time operation 

DSP computation time > Traffic generation time 
 

If we repeat the above calculations for a varying number 
of data rates, it would be observed that our DSP is well 
capable of handling 4/8 voice channels of standard 64 
Kbps with/without channel coding. However, the 
figures quoted are not the most optimized ones and 
further work is continuing in order to bring them to the 
level of being benchmarked with TI’s standard 
implementations. 
 

VII. HARNESS DESIGN 

The harness of the system induces a point where 
successful design decisions will distribute the 
computational load on each individual component as 
well as minimize the problems relating to data flow 
hierarchy. We propose a mixed serial/parallel 
architecture where a DSP communicates with controller 
on a serial link and communicates with the FPGA on a 

Algorithm Process Time in 
CPU Cycles 

4 point QAM receiver with hard 
decision slicer 13000 

4 point QAM transmitter with a 
transmit filter of 41 Taps 3600 

8 PSK trellis coded decoder with 
hard decision trace back 8000 

8 PSK trellis coded encoder 200 



parallel highway. The figure below illustrates the 
interfaces deployed  

 
 
 
 
 
 
 
 

 
 

Fig. 4. Interface Specifics 
 
As can be seen in the Fig. 4, the DSP is interfaced 

through a Multi channel Buffered Serial Port (McBSP) 
to the microcontroller interface and through an external 
memory interface to the FIFO residing within the FPGA 
[6][13][14]. The types of interfaces employed are design 
decisions which give us the following key advantages. 

1. The raw data traffic being generated and 
modified by the link-layer exists in a highly 
packed version of raw bits, all of which has to 
undergo formatting and base-band processing. 
The magnitude of the data dictates that a high 
speed serial link will adequately serve the 
purpose 

2. The data being spewed out of the DSP is a 
modulated one and has to go through a data 
converter. The data therefore exists as digital 
samples of an analogue waveform which will 
be generated upon DAC interpolation. Each 
sample therefore resides with a certain number 
of precision bits as a separate entity. The sheer 
volume of the data and its character dictates 
that the same should be relayed over a parallel 
channel configured to the width of each data 
sample 

We, therefore, can have our interface judgments 
supported by the achievable data rates of both the 
interfaces. McBSP can typically handle a high rate E1 
stream as well as higher multiplexed versions of the 
same. EMIF on the other hand can transmit as fast as the 
peripheral clock which has a maximum operation 
frequency of half the processor clock. 

VIII. CONCLUSION 

We have demonstrated the need for a rapid 
prototyping platform for digital transceivers and 
discussed the skeleton of a generic architecture. The 
generic architecture was then fine-tuned to absorb 
requirements posed by different system level 
constraints. We finally emerged with a home-brewn 
multiprocessor framework that has been implemented 
and has demonstrated successful prototyping 
realizations. We then laid out the performance of 

standard receiver implementations on the proposed 
platform and compared their feasibility by assuming a 
standard 64 kbps traffic generator. The paper has 
presented an integration scheme for successfully 
weaving all processors into a synergetic framework 
geared towards communication applications 
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