
A Heuristic-Based Technique for University Resource Allocation
Problems

Dr. Mohamed Tounsi

Computer Science Department, Prince Sultan University, P.O. Box 66833, Riyadh, 11586, KSA,
mtounsi@cis.psu.edu.sa

ABSTRACT —
Most academic institutions face the problem of
scheduling both courses and examinations in every year.
As the difficulty of the problem increases, due to a large
number of students, courses, exams, rooms and
invigilator constraints, an automated resource allocation
system that can produce feasible and high quality
timetables is often required. To provide a good university
planning, a fast and efficient solver is required. Various
techniques are proposed to solve the timetabling
problem, since course planning is a combinatorial
optimization problem, we apply a heuristic based
approach to solve it. In this paper we propose a solver
based on using an efficient heuristic for planning: tabu
search. We show how all hard and soft constraints are
taken into account to solve some real life benchmarks.
We conclude the paper by presenting some issues to
improve the proposed algorithm and discussing their the
possibility for hybridizing with other powerful heuristics.

Index Terms — Local Search, Heuristic, Tabu Search,
Resource allocation Problems.

I. INTRODUCTION

Course planning is defined here as a process of
assigning courses to timeslots and instructors, which
satisfy all constraints. The basic challenge is to
schedule courses over a limited timeslots so as to
avoid conflicts and to satisfy a number of side
constraints. It belongs to timetabling problems.
There are two main problems in timetabling [2]. The
first one is related to the combinatorial nature of the
problems, where is difficult to find an optimal solution
because it is impossible to enumerate all nodes in such
a large search space. The second one is related to the
dynamic nature of the problems where variables and
constraints are changing in accordance with the
development of an organization. Various techniques
have been proposed to solve timetabling problem, such

as Linear programming [10], graph coloring [2],
genetic algorithm, knowledge-based reasoning [4] etc.
This paper is divided in five sections:
First, we introduce the Tabu search method and list
our requirements, formulate and analyze the model.
We the present Tabu design, including the design of
neighborhood structure, move mechanism, initial
solution generation, evaluation function, and
termination criterion. The next section introduce the
planning system, present experiment result and result
analysis, finally we present a conclusion and present
some future works

II. TABU SEARCH

Tabu Search is a general search procedure devised for
finding a (hopefully) global minimum of a function f,
defined on a feasible set X. For each solution s in X,
we define a neighborhood N(s) which consists of all
feasible solutions that can be obtained by applying to s
a simple type of modification m.
The procedure starts from an initial feasible solution
and tries to reach a global optimum of the problem by
moving step by step. Whenever a feasible solution s
has been reached, we generate a subset V* of N(s) and
we move to the best solution s* in V*. If N(s) is not
too large, it is possible to take V*=N(s). The use of the
best move criterion in TS is based on the supposition
that moves with higher evaluations have higher
probability of leading to an optimal (or near optimal)
solution or of leading to such a solution in a fewer
number of steps. The notation s*=s ⊕ m means that s*
is obtained from s by applying modification m. In
order to be able to escape from local minima, the move
to s* is made even if s* is worse than s(i.e. f(s*)>f(s)).
This strategy may clearly induce cycling of the
algorithm. In order to prevent this, we introduce a
Tabu list T. This list contains the modifications which

 1

were made in the last |T| steps of the algorithm. When
constructing V*, we forbid the generation of solutions
that are obtained from s by applying the reverse of the
modification memorized in the Tabu list. This
principle reduces the risk of cycling since it guarantees
us not to return for a given number of iterations to a
solution visited previously. Unfortunately, it may also
forbid us to move to some solutions which have not
been reached yet. Deciding that a modification m is ,
at a given step, Tabu or not may be too absolute. In
order to have a higher degree of freedom in generating
the subset V*, it should be possible to forget the Tabu
status of a modification when it seems reasonable to
do this. This is why we introduce for every ‘tabu’ for
every possible value z of the objective function an
aspiration level A(z): a solution s’ in N(s) which
would be ‘’Tabu’ because of list T can nevertheless be
taken into account if f(s’)<A(f(s)). The function A is
called the aspiration function. A simple example of
application of this idea is obtained by setting
A(f(s))=f(so) where so is the best solution encountered
so far. In this case, we accept a Tabu modification
only if it leads to a neighbor solution better than so.
This criterion can on no account introduce an
additional possibility of cycling. For more details
please refer [1].
Two rules can be defined in order to interrupt the
whole TS process. The first is to stop as soon as nimax
iterations have been performed without decreasing the
value of the best solution obtained. We may also
interrupt the procedure when the value of the current
solution is close enough to the minimum value fmin of
f, which is known in certain problems [5]. This second
rule avoids us executing nimax additional iterations
after having reached an optimal solution or a solution
judged sufficiently good. A general description of the
TS procedure is given in Figure 1.

III. COURSE PLANNING REQUIREMENT

- Less than 40% classes before 12:00 noon or from
12:00 ~ 5:00 pm, and
- More than 20% classes after 3:00 pm.
- Schedule no more that one undergraduate course

and one graduate course in each allowable time

slot, so that a student can take any two courses
offered by the department.

- Any two courses taught by the same instructor
cannot be scheduled in the same time slot.
- Schedule all the courses taught by any instructor on
the same days (e.g., MW, TR).
- Satisfy all faculty preferences (e.g., no classes before
9:00 am, or after 5:00 pm).
- Schedule all junior (senior) undergraduate classes on

the same days; such that students don't need to
come to school on everyday if choose so.

- Schedule all classes using university standard time
slots.

- Whenever possible, schedule all FEEDS classes to
start before 8:00 am, at 12:00 noon, or after 3:00
pm.

a. Course planning case
formulation

There are 4 course classifications:
Undergraduate elementary courses, Junior and senior
courses, Graduate courses and Partial Graduate
courses.

C(k) ={course index | i∈ course class k}

There are 4 course types:
Two Hour Courses (one section), Two Hour Courses
(Two section), Three Hour Courses (Two section) and
Evening Courses. Each type has its own standard time
slots community, which is specified by the university.
For example, if a course belongs to course type 4, then
this course can only be set into one of the 12 time
slots.
So these 12 time slots constitute a community of
course type 4. Once a course type is fixed, then the
time slots choices are fixed.
Which type a course belongs to is preset before
planning?

We define
T(i)={timeslot index j |j∈timeslot ∈ coursetype}
A. The relationship between the professors and
courses is preset. We define
P(r) ={course i| i is taught by professor r}
B. Let

⎭
⎬
⎫

⎩
⎨
⎧

=
otherwise

jslottimetosetisicourse
xij ,0

,1

 2

Note that for course i, if , then

, we don’t need to set j to all the time slots.

licoursetype =)(
)(lTj∈

C. For different course type time slots, there is
overlap among timeslots.

}j'|'{)(withoverlapjjindexslottimejO =

D. Some faculty has an own time constraints,
(e.g., no classes before 9:00 am, or after 5:00 pm). We
define a constraint as:

}|{)(rprefossorbypreferednotisjjindextimeslotrF =

E. Whenever possible, schedule all FEEDS
classes in specified time period (e.g. start before 8:00
am, at 12:00 noon, or after 3:00 pm.). This implies a
constraint:

}|{ courseFEEDisiiindexcourseD =
}|{ preferentimecourseFEEDwithinjjslottimeFTIME=

i. Constraints:

 We can divide the constraints into strong constraints
and weak constraints. Then our schedule must satisfy
strong constraints and try to satisfy weak constraints as
possible as we can.

Strong constraints:
1) The same classification courses can not be arranged
at the same time.

jkx
kCi

ij ,,1
)(

∀≤∑
∈

 (Eq. 1)

2 The course taught by the same instructor cannot be
arranged at the same time (Notice overlap timeslots).

∑∑
∈+

∀=
)()(

,,1
rPi

ij
jOj

jrx (Eq. 2)

Weak constraints:
1) Schedule all the courses taught by any instructor on
the same days (e.g., MW, TR).

Let N(r) denotes the number of weekdays professor r
has classes, . 5)(≤rN

Let denote the summation of total number of all

the professors. (Eq. 3)
1F

∑=
allr

rNF)(1

2) Whenever possible, schedule all FEEDS classes to
start before 8:00 am, at 12:00 noon, or after 3:00 pm.
We define

Let denote the total number of feed courses which
are not satisfied with FEED course time requirement.

⎩
⎨
⎧ ∉∈

=
otherwise

FTIMEjFEEDiif
C ij ,0

,,1
'

2F

∑∑=
alli allj

ijij xCF '2 (Eq. 4)

3) Less than 40% classes before 12:00 noon or from
12:00 ~ 5:00 pm, and ≥ 20% classes after 3:00 pm.
Let t1 denote the time period before 12:00 noon
Let t2 denote the time period from 12:00 ~ 5:00 pm.
Let t3 denote the time period after 3:00 pm.
Then denotes the total number of courses in t1

period.

)1(tN

)2(tN Denotes the total number of courses in t2

period.
)3(tN Denotes the total number of courses in t3

period.

Let denote the satisfiability for this constraint. 3F

%))40/)2((,0(%))40/)1((,0(3 −+−= ntNMaxntNMaxF
−+ %20,0(Max

4) Satisfy all faculty preferences (e.g., no classes
before 9:00 am, or after 5:00 pm).

Define

⎩
⎨
⎧ ∉∈

=
otherwise

rFjrpiif
C ij ,0

)(),(,1
"

Let denote the total number of courses, which do

not satisfy professor preference.
4F

Then ∑∑=
alli allj

ijij xCF "4

For all these weak constraints, we can evaluate their

satisfied degree. are used to evaluate

these constraints. Then our objective is to minimize
these values as possible as we can.

4321 ,,, FFFF

IV. THE TABU SEARCH ALGORITHM

1) Evaluation Function

The objective is to minimize the cost of violating the
soft constraints.

 3

Min 44332211 FwFwFwFwF +++=

4321 ,,, FFFF Have been defined above.

 Are the weights for each constraint.

We determine the weight for each constraint based on
the importance of the constraint.

4321 ,,, WWWW

2) Move
We define two moving mechanisms: Transfer and
Interchange.

Transfer: change course from one time

slot to another time slot.
ikij xx >−

Precondition:

)(',,'~),(,,0,1 kCiiilTkjxx ikij ∈∀∈==
If we transfer course i from timeslot j to timeslot k,j,k
should belong to the same course type time slots, and
in time slot k, there is no other courses with the same
classification with i).

Effect: . 1,0 == ikij xx

Interchange: interchange two courses

time slot.
'' jiij xx ↔

Precondition:

)(',),(',,1,1 '' kCiilTjjxx jiij ∈∈==

Interchange course i and i’ timeslots, if i and i’ are in
the same classification, their timeslots j and j’ belong
to the same course type.

Effect: 0,1,0,1 '''' ==== jijiijij xxxx

After one move, the new solution should satisfy the
above two strong constraints. So before performing a
move, first check its precondition, then check its
feasibility of constraint (b), after a move, update
information based on effect. (Constraint (a) will be
satisfied automatically, due to the precondition
definition)

3) Neighborhood structure
There are 4 time slot communities since there are 4
course types, T(1), T(2), T(3), T(4). Because the
course type is fixed, the set of neighborhood can be
reached from a single move in a single community,
which means that we only search the timeslots with the
same course type instead of all the timeslots.

We search course assignments based on course
sequence. During one iteration, we are going to
change every course’s timeslot, which the number of
solutions during one iteration equal to the number of
courses. But there are multiple possible moves for one
course, which equal to the number of total time slots
of that course type. Our design is not to search the
whole neighbor but randomly pick up a time slot in the
same course type. If it is occupied by other course in
the same classification, then performing interchange,
otherwise performing transfer. So the neighborhood
size is reduced to the number of courses.

4) Initial solution

The courses and time slots are indexed sequentially, so
just put the first course into first feasible time slot,
then the second … at the same time, should check
strong constraints feasibility.
Using this method to get initial solution, there is
possibility that some courses cannot get feasible
timeslots. But the feasible solution is much more
important than other constraints. In this sense, we can
issue strong punishment for infeasible solutions
Define n as the number of courses without feasible
timeslots. During an iteration, if n>=0, we set new
F’=n*10*F.
So from above, we can see that to reduce the number
of courses without feasible timeslots will significantly
reduce the penalty, which will definitely be accept
during neighborhood search iteration.

5) Termination criteria
Define two ways to terminate searching:
a) Reaching the maximum repeating time
b) The time stuck at the same solution exceed the

limit.
6) Tabu list

Tabu list composes of two attributes of a move, one is
the timeslot ID, another is classification ID.
About the Tabu tenure, the length should be shorter
than the number of timeslots of any course type.
Otherwise it will happen that during next iteration, all
possible moves are in Tabu list.

IV.I. SEARCH PROCEDURE

The Local Search Procedure:
 Local-search(T)

 4

1 Course index i = 1 ;
2 Randomly pick up a time slot index j from
T(l), for i belongs to course type l, ;)(lTj∈
3 Check Tabu list, if this move is in Tabu list,
return to 2.
4 Precondition check, if j is occupied by the
course in the same classification, go to step 5 perform
interchange move, otherwise go to 6 perform transfer
move.
5 Perform interchange move, check whether this
move is feasible for constraint (b), if not go to step 2,
else go to step 7;
6 Perform transfer move, check whether this
move is feasible for constraint (b), if not go to step 2,
else go to step 7;
7 Calculate its evaluation value F, if the number
of courses without feasible solution n is larger than
zero, F’=F*10*n.
8 i++; if i > Number-of-Courses then go to
9,else go to 2;
9 Return best move with the least penalty value
F.

Course Planning Search sp

1000

1500

2000

The Main Procedure:

 Tabu-search(T)
1 Generate initial solution T, LocalT = T, BestT = T;
2 Repeat time rT =1; Stuck_time sT = 1;
3 T = Local-search(T);
4 Update tabu list and other information;
5 LocalT =T;
6 If BestT>T, then BestT =T;
7 RT++; if T remains the same, then sT++;
8 If rT> max_flip or sT > stuckLimit, go to
9,else 3;
9 Return BestT.
Figure 1: The Tabu Search Algorithm

V. EXPERIMENT RESULT

The course planning system is composed of three
parts: the database and knowledge base module, it
contains timeslots, courses, instructors’ information,
including 5 arrays: course, course classification,
course type, instructor, and timeslot. The Data
management module, this module is coded in C

language, in charge of managing data from database.
It retrieves data from database, and outputs result into
database and the schedule generation module, this
module is coded in C language, it performs Tabu
search to generate a good planning.

Experiment data
We used benchmarks from the Timetabling Research
Group and ASAP research Group; these data are real
life problems. We have 29 courses and 20 instructors,
including 20 FEED classes. We build the professors’
preference.

Table 1

The course distribution

Courses
number

29

Time slots
number for type 1

63

Instructors
number

20

Time slots
number for type 2

20

Classification

4

Time slots
number for type 3

12

Course type

4

Time slots
number for type 4

12

Feed course
number

11

Table 2:

The Professor preferences
Professor

ID
Class not

before
Class not

after
1 10:00 18:00

3 9:00

4 9:00 16:00

18 10:00

Numerical analysis

First, since the smallest timeslot number is 12, so I
choose 8 as Tabu tenure length, and maximum
iteration length is 400. To keep each weak constraint

penalty balanced, we set weights in a way so as to iW

 50

500

1 22 43 64 85 10
6

12
7

14
8

16
9

19
0

21
1

23
2

25
3

27
4

29
5

iteration

ev
al

ua
tio

n
fu

nc
tio

n

Distribution Professor preferenc
Week days Feed
Local value

keep in the same digital size.

(for professors’ week days),

(for FEED courses), (for

course distribution),

)4,3,2,1(=iFi

101 =W

2002 =W 20003 =W

1004 =W (for professor

preference).
Fig.1

Course Planning Search Space

 After numerous experiments, I found all results had
no much difference and the best solution was pretty
close. Each running time was around 4 seconds,
which was very fast.

Compared with the initial solution, the final solution
has 11 courses that change their timeslots. The final
solution satisfied all the professors’ preference. For
example, in the initial solution, there are two courses
of professor 1 scheduled before 10:00 am. After
iterations, these two courses are changed to the
timeslots after 10:00 am.
Distribution constraint is satisfied at the initial
solution, and never be violated during iteration. There
are five feed courses out of required time period at the
initial solution, but finally all have been adjusted to the
right timeslots. This algorithm also tries to schedule
professor to work at the fewer workdays, such as
professor 3.
We can also see the improvement from the below
“Course planning search space” figure. The

“evaluation” axis represents all and local value F

during each iteration. This figure indicates the
performance trend of solutions. From the figure, we
can see that during the first 24 iterations, All F value
decrease quickly, and then enter a plateau. Though
Tabu list can prevent a cycling, but we can still see
peaks. So there is still cycling in Tabu search.

iF

V. CONCLUSION

We have developed a meta heuristics technique
approach for solving course planning problem, and
propose many computational study.
Course planning is intractable and seen as the most
difficult problem, since it is linked with the scheduling

problems. If it is done manually, it is a time
consuming and tedious job. This paper shows that it is
possible to find good solutions in a short time using a
meta-heuristics technique as Tabu search.
Because the sample problem size is not big and easy to
solve, this paper does not consider any aspiration
function and the diversification of Tabu search. But
we can diversify our search by controlling the weights

, through weights; we can direct the search

direction.
iW

REFERENCES

[1] F.Glover, M.Laguna. Tabu Search, Kluwer Academic
Publisher, 1997.
[2] Michael Pinedo, Xiuli Chao. Operations Scheduling with
Applications in Manufacturing and Service. Irwin McGraw
hall. 1999.
[3] Daniel Costa. Theory and Methodology: A Tabu Search
algorithm for computing an operational timetable. European
Journal of Operational Research, 76(1994), 98-110.
[4] SB Deris, S Omatu, H Ohta, PABD Samat, University
timetabling by constraint-based reasoning: A case study.
Journal of the Operation Research Society (1997) 48,1178-
1190.
[5] Edward L. Mooney, Ronald L. Rardin, W.J. Parmenter.
Large-scale classroom scheduling. IIE Transactions (1996),
28, 369-378.
[6] T Birbas, S Daskalaki, E Housos. Timetabling for Greek
high schools. Journal of the Operation Research Society
(1997) 48,1191-1200.
[7] Buyang Cao, Fred Glover. Tabu Search and Ejection
Chains----Application to a Node Weighted Version of the
Cardinality-Constrained TSP. Management Science. Vol
43, No 7, July 1997. 908-921.
[8] C. Privault. Solving a Real World Assignment Problem
with a Metaheuristic. Journal of Heuristics, 4, 383-
398(1998).
[8] Michael W. Carter, A lagrangian relaxation approach to
the classroom assignment problem. Infor vol. 27, no 2, May
1989
[9] Karl Gosselin, Michel Truchon. Allocation of
Classrooms by Linear Programming. Journal of the
Operational Research

 6

	A Heuristic-Based Technique for University Resource Allocati
	Computer Science Department, Prince Sultan University, P.O.
	Index Terms — Local Search, Heuristic, Tabu Search, Resource
	INTRODUCTION
	C(k) ={course index | i(course class k}

	THE TABU SEARCH ALGORITHM
	References

