
Cholesky Factors Based Wavelet Transform Domain
LMF Algorithm

Muhammad Moinuddin and Azzedine Zerguine
Electrical Engineering Department

King Fahd University of Petroleum & Minerals
KFUPM, Dhahran 31261, Saudi Arabia.

E-mails:{moinudin, azzedine}@kfupm.edu.sa

Abstract— This paper presents a new wavelet transform do-
main least mean fourth (LMF) algorithm. The algorithm exploits
the special sparse structure of the wavelet transform of wide
classes of correlation matrices and their Cholesky factors in
order to compute a whitening transformation of the input data
in the wavelet domain and minimize computational complexity.
This method explicitly computes a sparse estimate of the wavelet
domain correlation matrix of the input process. It then computes
the Cholesky factor of that matrix and uses its inverse to whiten
the input. The proposed algorithm has faster convergence rate
than that of wavelet transform domain least mean square (LMS)
algorithm.

I. INTRODUCTION

The LMS algorithm [1] provides a solution to the optimal
Weiner Filter criterion minimizing the mean square value of
the error in a stochastic approximation sense. LMS belongs to
the gradient type algorithmic schemes, thus inheriting their
low computational complexity and their slow convergence,
especially on highly correlated signals like speech. The reason
is that LMS algorithm is directly dependent on the correla-
tion matrix R of the input vector xn. Therefore, when the
eigenvalue spread of R is large, LMS algorithm experiences
a gradient noise amplification [1].

To improve the convergence speed of the LMS algorithm,
the input vector can be transformed so that the input correla-
tion matrix in the transformed domain has a lower eigenvalue
spread (i.e. close to 1). In particular, if R is nonsingular,
we can prewhiten the input to the LMS adaptive filter by
premultiplying xn by the matrix L−1, where L is the lower
triangular Cholesky factor of R, i.e., R = LLT . This approach
is equivalent to using a Newton-LMS type algorithm [2] and
requires O(N 2) flops, making it computationally expensive.
In case R is singular, whitening cannot be used, and an
alternative procedure such as the one described in [3] can be
used.

The increase in computational complexity due to prewhiten-
ing may be alleviated if R has some special sparse structure.
In particular, if R is diagonal, this increase is minimal. This
observation has motivated the development of a variety of
transform domain algorithms (cf. [4] and the references cited
therein) [5], [6], [7], wherein one hopes to obtain a near
diagonal input correlation matrix in the transform domain by
a proper choice of the transform. A Newton-LMS type filter
realized in the transform domain then leads to an improved

convergence speed with a much smaller computational bur-
den. For example, the DFT (implemented using fast Fourier
transform (FFT) algorithms) or the DCT nearly diagonalize a
large (large filter lengths) Hermitian symmetric and Toeplitz
correlation matrix because such a matrix can be approximated
by a circulant matrix [8]. The cost of such a transformation is
a minimal O[Nlog(N)] flops. Subband adaptive filters with
improved convergence and low computational burden have
also been suggested [9]. In [10], a new wavelet transform do-
main least mean square (LMS) algorithm was proposed which
exploited the special sparse structure of the wavelet transform
of wide classes of correlation matrices and their Cholesky
factors in order to compute a whitening transformation of the
input data in the wavelet domain and minimize computational
complexity. It is well known that least mean fourth (LMF)
algorithm [11] and its normalized version (NLMF) algorithm
[12] have better performance in non Gaussian environments.
This gives motivation towards wavelet transform domain LMF
algorithm.

In this paper, a wavelet transform domain least mean fourth
(LMF) algorithm is proposed which uses the special sparse
structures of the input correlation matrices and their Cholesky
factors in the discrete wavelet transform (DWT) domain. This
approach explicitly computes a sparse estimate of the wavelet
domain input correlation matrix and its Cholesky factor. It then
uses the inverse of the Cholesky factor to whiten the input.

This paper is organized as follows: in Section II, the
DWT computation for finite sequences is briefly discussed.
In Section III, the proposed wavelet domain LMF algorithm
is developed. Simulation results are presented in Section IV
while results are concluded in section V.

II. THE DISCRETE WAVELET TRANSFORM

Although the discretized continuous wavelet transform en-
ables the computation of the continuous wavelet transform
(CWT) by computers, it is not a true discrete transform.
As a matter of fact, the wavelet series is simply a sampled
version of the CWT, and the information it provides is
highly redundant as far as the reconstruction of the signal
is concerned. This redundancy, on the other hand, requires
a significant amount of computation time and resources. The
discrete wavelet transform (DWT), on the other hand, provides
sufficient information both for analysis and synthesis of the



Fig. 1. Wavelet Transform Based Analysis and Synthesis Filter Banks.

original signal, with a significant reduction in the computation
time. The DWT is considerably easier to implement when
compared to the CWT.

The discrete wavelet transform of a square integrable func-
tion (finite energy signal) s(t) is defined as

C(j, k) =
∫

R

s(t)ψj,k(t)dt (j, k) ∈ Z2, s ∈ L2(R) (1)

where C(j, k) are the discrete wavelet transform coefficient.
ψj,k(t) are the wavelet expansion functions or the wavelet
basis functions. These are related to the original mother
wavelet function denoted as ψ(.) and are given as follows.

ψj,k(t) = 2j/2ψ(2jt− k), (2)

where j and k are the dilation and translation parameters,
respectively.

In this work, discrete nonredundant M-band wavelet decom-
positions [13] is used as shown in Figure 1. Wavelet transforms
have been treated in considerable detail, and wavelet decompo-
sitions reconstruction constraints have been related to perfect
reconstruction filter (PRF) banks [14].

III. WAVELET TRANSFORM DOMAIN LMF ALGORITHM

In this section, we describe a new wavelet transform domain
LMF algorithm based on a fast technique for whitening the
input data. This technique rely on the DWT domain sparse
structure of wide classes of input correlation matrices and their
Cholesky factors. This approach explicitly computes a sparse
estimate of the input correlation matrix and its Cholesky factor
in the DWT domain. It then uses the inverse of this Cholesky
factor to whiten the input.

If yn denotes the N×N discrete wavelet transform of input
xn, then yn can be written as:

yn = Qxn, (3)

where Q represents the unitary transformation for discrete
wavelets. Similarly wavelet transformed domain weight vector
wn is given by:

wn = Qhn, (4)

where hn is the time domain weight vector of the adaptive
filter. The wavelet transform domain adaptive FIR filter is
shown in Figure 2. The update of wavelet transformed domain
weight vector wn in the proposed algorithm is given by:

wn+1 = wn − µĝn, (5)

where, the vector ĝn is obtained by solving

R̂ynĝn = −2e3nyn, (6)
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Fig. 2. Transformed Domain Adaptive FIR Filter.

where R̂yn is the sparse estimate of the correlation matrix
Ryn of wavelet transformed input yn, and en is the output
error defined as:

en = dn − wT
n yn, (7)

where dn is the desired response. In the case of system
identification scenario, dn is given by:

dn = cT
nxn + ξn, (8)

where cn and ξn represent unknown system and the additive
noise, respectively. Figure 3 depicts this clearly. In this work,
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Fig. 3. System Identification Scenario.

R̂yn is computed by estimating only the expected nonnegli-
gible entries of Ryn. All other entries of Ryn are set to zero.
For this purpose, the sparse Cholesky factorization of R̂yn is
used. Thus rewriting equ (6) in terms of the Cholesky factors
as follows:

L̂ynD̂ynL̂T
n ĝn = −2e3nyn. (9)

The above equation can be solved in three steps as follows:

L̂yna = −2e3nyn, (10)



D̂ynã = a, (11)

and

L̂T
n ĝn = ã. (12)

Since D̂yn is a diagonal matrix, evaluation of ĝn using this
approach has very low complexity.

A. Summary of the Algorithm

Following are the steps of implementation of the proposed
algorithm:

1) Compute the discrete wavelet transform of xn (i.e., yn).
2) Maintain and update R̂yn, which is the sparse matrix

approximate of the DWT domain correlation matrix.
3) Compute the approximate Cholesky factors L̂yn and

D̂yn of R̂yn.
4) Finding the inverse of R̂yn.
5) Update the transformed weight vector using equations

(5) and (6).

IV. SIMULATION RESULTS

In this section, the results of the computer simulations
are presented which are made to investigate the performance
behaviors of the proposed LMF algorithm. These results are
compared with the results of wavelet domain LMS algo-
rithm in unknown system identification problem which shows
better performance of the proposed algorithm in terms of
convergence speed. The performance measure considered is
the normalized weight error norm (10log10‖wn − c‖2/‖c‖2).
where c is the vector representing the unknown system.

We have chosen ”Harr” wavelets for computation of the
DWT of the input sequence. The unknown systems to be
identified has FIR model given by [0.5, 1]T . The observation
noise is uncorrelated with the input sequence. The noise added
has zero mean while signal to noise ratio (SNR) used is 20 dB.
The length of the adaptive filter is chosen equal to the length
of the unknown system. The performance measure is analyzed
in both gaussian and uniform environment. The results are
obtained by averaging over 50 independent runs.

In Figures 4, and 5, it is shown that the proposed algorithm
has achieved the same noise floor in a smaller number of
iterations as compared to the wavelet domain LMS algorithm.
In both environments, the proposed algorithm achieved the
same steady state approximately in 500 iterations earlier than
the wavelet domain LMS algorithm. The stability of the
proposed algorithm is compared with the wavelet domain LMS
algorithm when there is a sudden change in the environment.

In Figures 6, and 7, it is shown that the proposed algorithm
has a better ability to recover from a sudden change in the
environment. In both Gaussian and uniform environments, the
proposed algorithm has recovered from sudden change faster
than that of the wavelet domain LMS algorithm.
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Fig. 4. Comparison of the convergence speed in Gaussian environment.
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Fig. 5. Comparison of the convergence speed in uniform environment.
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Fig. 6. Comparison of the recovery ability for a sudden change in the
Gaussian environment.
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Fig. 7. Comparison of the recovery ability for a sudden change in the uniform
environment.

V. CONCLUSION

A new wavelet transform domain least mean fourth (LMF)
algorithm is proposed in this work. The algorithm exploits
the special sparse structure of the wavelet transform of wide
classes of correlation matrices and their Cholesky factors in
order to compute a whitening transformation of the input data
in the wavelet domain and minimize computational complex-
ity. This method explicitly computes a sparse estimate of the
wavelet domain correlation matrix of the input process. It
then computes the Cholesky factor of that matrix and uses its
inverse to whiten the input. The proposed algorithm has faster
convergence rate and better recovery ability from a sudden
change in the environment than that of wavelet transform
domain least mean square (LMS) algorithm.
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