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ABSTRACT  —  This paper presents an algorithm to solve 

the inverse kinematics problem for a complex wrist  
structure six degree of freedom (6DOF) robotic 
manipulator. The last three rotating axes do not intersect at 
one point and there are off axes in its coordinate frames. 
The proposed algorithm based on the rotation vector 
concept, which is also used to describe the orientation of 
manipulator end-effector. All the possible solutions of the 
inverse kinematics problem can be obtained by using the 
proposed algorithm which is tested practically on the 
MA2000 robotic manipulator. 

INDEX TERMS  —  Kinematics, Manipulator, Vector 
Analysis. 

I. ROTATION VECTORS  

The relative orientation representation by the rotation 
vector are based on the Euler theorem which states that (a 
displacement of a rigid body with one fixed point can be 
described as a rotation about some axis). The rotation 
vector is a vector pointing along this axis, and its 
magnitude contains information about the rotation angle. 
Consequently, the rotation vector is only common vector 
of any two coordinate systems (frames) having the same 
origin and differing in their orientation. This feature is 
applied to perform vector transformation between two 
frames. The direction of the rotation vector defines the 
axis around which one coordinate system has to be 
rotated to achieve the same orientation as the other 
system, while its magnitude defines the amount of the 
rotation [1]. The rotation vector concepts supposes the 
existence of a common axis around which one coordinate 
system has to be rotated to achieve the same orientation 
as another coordinate system. A vector along this 
common axis, whose magnitude is defined by the amount 
of the rotation around this axis, is called the rotation 
vector R which is given by [1]-[3]:  

T
zyx ]R,R,R[f*u)

2
tan(*uR ==

θ
=      (1) 

where u: The unit vector along axis of rotation. 
       θ: Angle of rotation about the u vector. 
       f : Magnitude of the rotation vector, f=tan(θ/2).  
A vector v undergoing a rotation R to perform a vector 

vb can be described as [1],[ 3]: 
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where R: The rotation vector. 

       v: The original vector. 
       vb: The rotated vector (the old vector in the new 
       coordinate frame). 
       ×: Cross product operator.  
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Case study 1: Consider a robotic manipulator arm that 
is shown in Fig. 1. The gripper orientation depends on the 
robot joints variables θ1 and θ2. The orientation of the 
gripper vector changes due to the motion of the robotic 
manipulator. Suppose the robot arm initially at X axis and 
the gripper vector coordinate are initially v=[0,2,0]T 
corresponding to θ1=θ2=0, while the final position of θ1 
and θ2 are 90o and 60o respectively. Find the final rotated 
gripper vector? 

The system has two rotation vectors R1 and R2 
corresponding to the angles of rotation θ1 and θ2.   

The first rotation R1 is performed around the Z axis 
and its direction is clockwise. The rotated gripper vector 
and the rotated rotating unit vector of the second rotating 
axis due to the first rotation R1 must be computed as 
follows: 
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where u1 is the rotating unit vector of the first rotation 
operator. 
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The rotated rotating axis of the second joint due to the 
rotation about the first joint is computed by: 
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The second rotation is done around the shifted Y axis 
and its direction is anticlockwise so that a negative sign 
appears on the R2. 
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where u2 is the rotating unit vector of the second rotation 
operator.  
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The results shows that the gripper vector which 
coincides originally with the Y axis, point now to the 
negative X direction. 

 
Fig. 1.     Coordinate of revolute robot with the gripper vector. 

II. THE PROPOSED ALGORITHM TO SOLVE THE INVERSE 
KINEMATICS   

The proposed algorithm divides the main task 
(solution the inverse kinematics problem) to subtasks to 
reduce the complexity of the solution of the inverse 
kinematics of the robotic manipulator.  

The first step in the proposed algorithm is to define a 
set of a Cartesian coordinate frames at the robotic 
manipulator. Among these coordinate frames there is a 
one frame is called the global coordinate frame of the 
system, this frame is fixed at a stationary point to be as a 
reference coordinate frame for the other frames which are 
called the local frames. At each joint in the robotic 
manipulator there is a local coordinate frame. The origin 
of this frame is fixed at the central point of that joints and 
the orientation of this frame is the same as the orientation 
of the global frame (coincidence).  

The rotating axis of each joint in the manipulator 
driven by an actuator is called the rotating axis of that 
joint of the manipulator. For each rotating axis there is a 
unit vector u along the axis of rotation of that joint which 
can be defined as u = [ux ,uy ,uz]T, where ux, uy and uz are 
the unit vectors of the rotation in the local coordinate 
frame of that joint which has the same orientation of the 
global coordinate frame. 

The position of the end-effector (gripper) of the 
robotic manipulator can be defined as: p= [px,py,pz] T, 

where the px, py and pz are the coordinates of the point p 
in the global XYZ coordinate frame. 

The orientation of the end-effector of the robotic 
manipulator can be described by defining the gripper 
vectors (components of the gripper) of the manipulator. 
The number of the gripper vectors is equal to the rotating 
axes in the gripper structure. Each gripper vector is 
defined with respect to the local coordinate frame of its 
joint. There are two methods to describe the orientation 
of the gripper in this algorithm. In the first method the 
description of the gripper is achieved by direct 
description of the desired gripper vectors, so that it is 
called direct orientation description. The indirect 
orientation description is the second method of 
orientation description. In this method the desired 
orientation of the gripper is described by defining the 
rotation angles about each rotating axis in the gripper 
structure starting from the actual (present) orientation of 
the gripper to the new orientation. 
 

Case study 2: Suppose the end-effector of a robotic 
manipulator with three joints as illustrated in Fig. 2 The 
first local coordinate frame is fixed at point (A) with the 
same orientation of the global coordinate system. The 
first rotation unit vector u1 can be defined as u1= [1,0,0]T 
because the rotation of this joint at this orientation is done 
about the X1 axis. The first gripper vector will be v1= 
[0,0,a]T  where (a) is the length of the first link in the 
gripper structure. The second local coordinate frame is 
fixed at point (B). The second rotation unit vector u2 is 
given by u2=[1,0,0]T; while the second gripper vector is 
v2=[0,0,b]T where (b) is the length of the second link in 
the gripper structure. The third local coordinate is fixed at 
point (C) which gives the third rotation unit vector 
u3=[0,0,1]T, and the third gripper vector v3=[0,d,d]T or  
v3=[0,-d,d]T (v3 is even symmetrical about the third 
rotating axis u3). 

 
 Fig. 2.     The gripper with old and new orientations. 
    

By using the first method of the orientation description 
the new gripper orientation can be described by defining 
the new (desired) gripper vectors v1, v2, and v3. If it is 
assumed the new gripper vectors are given by v1=[0,-
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a,0]T, v2=[0,0,b]T ,and v3=[d,0,d]T, then the new position 
of the first link in the gripper structure lies at the negative 
part of the Y1 axis, while the second link lies at the 
positive part of the Z2 axis and the third link lies in the 
X3Z3 plane at point x=±d and z=d.  

The description of the new gripper orientation using 
the second method of the orientation description can be 
done by defining the rotation angles about each one of the 
three rotating axes in the gripper structure. Thus the new 
orientation can be obtained from the first orientation by 
rotating by an angle +π/2 around the first rotating axis 
which coincident to X1 axis, then rotating by an angle -
π/2 about the second rotating axis which coincident to X2 
axis and finally rotating by an angle ±π/2 about the third 
rotating axis which coincident to Z3 axis. So that the 
rotation angles are φ1=+π/2, φ2=-π/2, and φ3=±π/2 where 
φ1, φ2 and φ3 are the rotation angles of the first, second 
and third joints in the gripper.  

III. COMPUTATION OF THE DESIRED GRIPER VECTOR 

When the indirect orientation description of the 
gripper vector is used to define the orientation of the 
desired gripper vector, it is important to describe the 
gripper orientation in the direct orientation description. 
There are two main steps to compute the desired gripper 
vectors vd in the direct form from the indirect form. The 
first step computes the actual (present) gripper orientation 
and actual (present) gripper rotating unit vectors. The 
second step represents the computation of the desired 
gripper vector by applying the rotation operator about 
each rotating axis in the actual (present) gripper 
orientation. 

As starting point to compute the actual orientation of 
the gripper vector, the reset position and orientation of 
the manipulator must be defined. It is recommended to 
make the reset position and orientation of the manipulator 
at the manipulator structure with the all joints variables 
are set to zero. According to the manipulator reset 
position the reset values of the components of the gripper 
vector and the rotating unit vectors of the gripper rotating 
axes must be defined. 

Now, by using the present values of the manipulator 
joints variables, the ith actual (present) gripper rotating 
unit vector uai can be computed by rotating its value at the 
reset position u0i about all the previous rotating axes in 
the manipulator by using the rotation vectors concept. 
Symbolically it can be written as: 
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where i=1,2,.....I(I: total number of gripper rotating axes). 
            k: Number of  rotating axes in the arm structure. 
            uia: The ith actual (present) gripper rotating unit 
vector. 
            ui0: The ith gripper rotating unit vector at the 
manipulator reset position. 

            jR)u( : Rotate the vector u about the jth rotating 

axis of the manipulator. 
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The ith actual gripper vector via can be computed in the 
same manner but the rotation of the ith gripper vector at 
the reset position vi0 is perform starting from the ith 
rotating axis in the gripper ending at the first rotating axis 
in the arm structure. Symbolically it can be written as:  
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where  via: The ith actual (present) gripper vector. 
             vi0: The ith gripper vector at the manipulator reset 
position. 
             jR)v( : Rotate the gripper vector v about the jth 

rotating axis of the manipulator. 
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The first desired gripper vector can be computed by 
rotating the first actual gripper vector about the first 
rotating unit vector by the value of φ1

.  
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The second desired gripper vector is computed by 
rotating the rotated second actual gripper vector v2r about 
the rotated second rotating unit vector u2r by the value of 
φ2

. The rotated second actual gripper vector v2r and the 
rotated second rotating gripper unit vector u2r are the 
results of applying the rotation operator on the second 
actual gripper vector v2a and the second actual rotating 
unit vector u2a about the first actual rotating unit vector 
ua1 by the value of φ1 respectively.  
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The same procedure is applied to compute the other 
components of the gripper vector. 

IV. GENERAL STEPS OF THE PROPOSED ALGORITHM TO 
SOLVE THE INVERSE KINEMATICS PROBLEM  

The solution of the inverse kinematics problem can be 
found by the following steps: 
1. The first step, a Cartesian (rectangular right 

handed) coordinate system X0Y0Z0 is assigned to the 
base of the manipulator. This coordinate represents the 
global coordinate of the manipulator system.  

2. The robotic manipulator structure will be 
divided into two main parts the first part (arm) includes 
the major three axes and it extends to the rotating axis 
of the fourth link at point ob. This point (ob) represents 
the end point of the major three links with the off axis 
(if it exists) due to the fourth link structure. While the 
second part (wrist) includes all the remainder of the 
robotic manipulator structure (from the virtual point ob 
to the end of the end-effector). 

3. Derivation (by using any mathematical method) 
the possible sets of the joints variables (angles) of the 
arm structure that attain the end of arm (point ob) to a 
certain position (that will be computed later in step 8). 
Note that this mathematical calculation is simple 
because it treats only three links and it represents a 
translation operation so that the orientation of the end 
point of arm (ob) is not important when the end point of 
the arm reaches the desired position.  

4. For each of the three major rotating axes in the 
arm structure, the rotation vector with respect to the 
base (global) coordinate frame must be defined. 

5. For the wrist structure, there are a Cartesian 
coordinate system at the beginning of each rotating axis 
in the wrist structure with the same orientation of the 
global coordinate system. These coordinate frames are 
used to define the rotating unit vector of each rotating 
axis in the gripper structure. Also there are another 
Cartesian coordinate frames with the same orientation 
of the global coordinate frame at the beginning of each 
component of the gripper vector. These coordinate 
frames are used to describe the gripper vectors. 

6. Computation the rotation vectors of the gripper 
structure for each rotating axis. Also the initial gripper 
vectors and the initial gripper rotating unit vectors at the 
reset position of the manipulator must be defined. 

7. Tf the indirect method is used to describe the 
gripper orientation, the new (desired) griper vectors vid 
must computed as described in the previous section. 
Also the total desired gripper vector vd must be 
computed as:  
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where n is the number of gripper vectors. 
8. Determination (by using the equations which 

were derived in step 3) the required position of point ob 
from the desired gripper vector vd (which is computed in 
step 7) and the desired position of the gripper p as: 

db vpo −=                                (30) 

9. Determination the sets of the possible solutions 
of the joints variables of arm structure of the robotic 
manipulator that is required to attain the point ob to the 
new position (which is computed in step 8). 

10. Repetition of steps 11, 12, 13, and 14 for each 
set of solutions of the arm (first part) joints variables 
that are computed in step 9. 

11. Repetition steps 12, 13, and 14 for each joint in 
the wrist structure, starting with i=1. 

12. Using the values of the arm joint variables (that 
are computed in step 9) and the initial position of the ith 
gripper vector, calculate the intermediate values of the 
ith rotated gripper vector vim and the ith intermediate 
rotating unit vector uim if the arm is moved form the 
reset position to the new position as computed in step 8.  

13. From the desired gripper vectors vid and the 
intermediate gripper vectors vim calculate the required 
value of θi which makes vim coincident to vid by using 
the following formulas: 
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substituted (31) in  (33) and solve for fi , yields: 
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14. If i ≠ I ( no. of the links in the wrist structure), 
then i = i +1, and append the computed value of the 
angle θi in step 13 to the arm joint variable and apply 
the steps 11-14 to compute θi+1, and so on. 

15. The total joints variables will be [θ1, θ2,…θm, θ4, 
θ5,…θn], where θ1, θ2 …θm are computed in step 9 and 



θ4, θ5 …θn are computed in steps 11 to 14, and m, n are 
the number of joints of the arm and wrist respectively. 

IIV. SOLUTION OF INVERSE KINEMATICS PROBLEM OF 
MA2000 MANIPULATOR USING PROPOSED ALGORITHM  

The proposed algorithm is tested practically on the 
MA2000 robotic manipulator, which is a 6DOF with 
complex wrist structure as shown in Figs. 3, 4. 

 

 
Fig. 3.     MA2000 robotic manipulator with the major 
coordinate frames. 
 

 

 
Fig. 4.     Geometrical structure of the end-effector (wrist) of the 
MA2000 robotic manipulator. 

The schematic diagram of the MA2000 at the reset 
position is shown in the Fig. 5. If it is required to move 
the gripper to a new position [-25,-10,50]Tcm with 
respect to the base (global) coordinate frame. The desired 
orientation of the gripper can be obtained by rotates the 
gripper 180o about the pitch rotating axis, 2250 about the 
rotated yaw rotating axis and finally 1350 about the 
rotated roll rotating axis. The problem is to determine the 
values of the six joint variables of the MA2000 that attain 
the central point of the gripper to the desired position 
with the desired orientation. 

By applying the steps in previous section, four 
possible sets of solutions of the inverse kinematics of the 
MA2000 manipulator can be found. Thus there are four 
sets of the joints variables [θ1 , θ2 , θ3 , θ4 , θ5 , θ6 ] that 
make the MA2000 attains the desired position with the 
desired orientation which are given in table 1. The sketch 
of MA2000 with these joints variables (solutions) are 
shown in Figs. 6, 7, 8, and 9. 

 
Fig. 5.     Sketch of the MA2000 at the reset position. 
 

TABLE I 
THE FOUR SETS OF SOLUTIONS OF THE INVERSE 

KINEMATICS PROBLEM FOR MA2000 MANIPULATOR 
THAT ATTAINED IT TO POINT [-25,-10,50 cm]. 

 θ1(deg.) θ2(deg.) θ3(deg.) θ4(deg.) θ5(deg.) θ6(deg.) 
1st set 197.35 -7.89 79.77 108.11 27.64 135 
2nd set 197.35 75.87 -79.77 183.90 27.64 135 
3rd set -1.22 187.89 -79.77 71.88 226.22 135 
4th set -1.22 104.12 79.77 356.09 226.22 135 

 
Fig. 6     Sketch of MA2000 manipulator at joint variables 
[197.35640, -7.89770, 79.77880, 08.11890, 27.64360, 1350]. 
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Fig. 7    Sketch of MA2000 manipulator at joint variables 
[197.35640, 75.87020, -79.77880, 183.90860, 4360, 1350]. 

 
 

Fig.8.     Sketch of MA2000 manipulator at joint variables        
[-1.22960, 187.89770, -79.77880, 71.88110, 226.22960, 1350]. 

 
 

Fig. 9.     Sketch of MA2000 manipulator at joint variables       
[-1.22960, 104.12980, 79.77880, 356.0914 0, 226.22960, 1350]. 
 

It is important to know that there are not always four 
sets of solutions. Some times there are three, two, one, or 
no solutions in solving the inverse kinematics problem of 
MA2000 manipulator. For example if the desired position 
of gripper of MA2000 is [4.4,-5,81]Tcm with new 
orientation corresponding to rotation by angles 900, 900 
and 00 about pitch, yaw and roll axes with respect to reset 
position of MA2000. The algorithm gives only a single 
solution (due to physical structure of the manipulator) for 

the inverse kinematics problem of the manipulator which 
equals to [00,900,00,00,900,00] as it is shown in Fig. 10. 

 
Fig. 10.     Sketch of the MA2000 robotic manipulator at the 
joint variables [00 , 900 , 00 , 00 , 900 , 00] 

VIII. CONCLUSIONS   

The proposed algorithm to solve the inverse 
kinematics of the robotic manipulators has the following 
features: 
The algorithm is based on the rotation vectors concept. 
1. It can be applied to most types of the robotics 
manipulators include the complex structure robotic 
manipulators which have high DOF. 
2. It gives all the possible sets of the joints 
variables of robotic manipulator that attain the end-
effector of the manipulator to the desired position and 
orientation. 
3. It has a less computation complexly than other 
method which uses the algebraic solution by using 
trigonometric (non linear) equations or the numerical 
techniques to find the solution of the inverse kinematics 
problem. Thus the execution time and the computational 
rate of the proposed algorithm are less than other methods 
such as the numerical method so that this algorithm is 
more suitable to use in the real time applications. 

The algorithm is used practically to solve the inverse 
kinematics problem of the MA2000 robotic manipulator. 
The results give four sets of possible solutions by using 
the proposed algorithm. Some times there are one, two, 
three, or no solutions depending on the physical structure 
of the manipulator and the desired position and 
orientation of the end-effector of the manipulator. 
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