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Abstract —  This research article presents a Fuzzy 

structure for a  Model Predictive Control (MPC) system.  

MPC theorem has recently been incorporated with fuzzy 

models. Such an integration provides controller design 

methods for an  MPC  control system.  The paper 

concentrates on  aspects of fuzzy based  MPC for 

multivariable systems. Mathematical formulation of 

linearized MPC  is utilized to introduce the concept of 

fuzzy based MPC scheme, then fuzzy MPC is constructed 

based on a modeled pH reactor.  

 

Index Terms  —  Fuzzy Control, MPC, Nonlinear 
System. 

 

 

I.  INTRODUCTION 

Traditionally, fuzzy controllers have been designed 

without an explicit model of the process being 

controlled. However, in fuzzy systems, mathematical 

models are explicitly used [1]. It has been found, that 

predictive control principle has recently been 

incorporated with fuzzy models. This provides design 

methods for fuzzy model based controllers,  since 

predictive methods have several advantages that make 

them good candidates for industrial applications.   

 

An important requirement for any system identification 

technique is the ability to exploit available priori 

knowledge. Many conventional approaches rely on 

depth physical knowledge describing the system. 

However, for complex ill-defined systems such 

knowledge is unavailable or limited. In these instances, 

an expert can often describe the behavior of the system 

using natural language.   

 

Since Zadeh's first paper [2], fuzzy algorithms behavior 

has been used to build models based on such 

humanistic descriptions. Despite the apparent success 

of fuzzy systems, there are many aspects of their 

behavior which are unsuited to system identification 

and modeling. The major criticism is that these models 

are mathematically opaque, and there is no formal 

mathematical representation of the system's behavior.   

In addition, due to the vagueness and subjectivity of 

natural language statements, fuzzy systems based on 

qualitative knowledge alone are unlikely to adequately 

model simple system. To circumvent these 

inadequacies, as in conventional empirical modeling, 

available data should be used to adjust and validate the 

model's behavior. Efforts to combine both empirical 

and qualitative modeling have lead to the development 

of fuzzy modeling techniques. Such techniques allow 

both linguistic system description and empirical data to 

be fully utilized during system identification cycle.    

 

 

II   FUZZY  SYSTEM IDENTIFICATION 

 

Fuzzy models are useful for describing processes 

where the underlying physical mechanisms are not 

completely known and where a process behavior is 

understood in qualitative terms.  An important property 

of fuzzy models is their capability to represent 

nonlinear dynamic systems.   The global operation of a 

nonlinear process is divided into several local operating 

regions. Within each region iR , a reduced order linear 

model in ARMAX form is used to represent the 

process behavior. This is not restrictive, and any 

appropriate model forms can be used.  Fuzzy sets are 

used to define the process operating conditions such 

that fuzzy dynamic model of a nonlinear process can be 

described in the following way : 
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Finally the associated model output is via the center of 

gravity as given in (2),   [3]:         
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III   FUZZY MODELS VIA MULTI-LAYER  NEURAL 

NETWORKS 

 

Fuzzy model described in section (2) can be 

represented by a special type of network topology 

which is termed here a neuro-fuzzy.  Fuzzy reasoning 

is capable of handling uncertain and imprecise 

information while a neural network is capable of 

learning from examples.  Neuro-fuzzy intend to 

combine the advantages of both fuzzy reasoning and 

neural networks. 

 

A. Neuro-Fuzzy Architecture 

 

For simplicity, we assume the fuzzy inference system 

under consideration has two inputs x(k−1) and y(k−R) 

and one output y(t).   For instant, if the rule base 

contains two fuzzy if-then rules of Takagi and Sugeno's 

type [4],  a rule can thus be expressed as: 

 

Rule 1:       

If  x(k-1) is A1  and y(k-2)  is B1 ,   

then  1111 )2()1( rkyqkxpf +−+−=  

 

Rule 2:  

If  x(k-1) is A2  and y(k-2)  is B2 ,   

then  

2222 )2()1( rkyqkxpf +−+−=                  (3) 

 

where p, q, and r are constants and called parameter 

set.  That is, the if  parts of the rules are same as in the 

ordinary fuzzy if-then rules, then parts are linear 

combinations of the input variables.   

 

B.   Training of the Neuro-Fuzzy System 

 

From the designed neuro-fuzzy architecture shown in 

Fig. 1.,  a given values of premise parameters, the 

entire output is expressed as a linear combinations of 

the consequent parameters. More precisely, output y
)

 

in Fig. 1.  can be rewritten as: 
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which is linear in the consequent parameters 

),,,,( 222111 randqprqp .   As a result, we have: 
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The consequent parameters thus identified are optimal 

(in the consequent parameter space) under the 

condition that the premise parameters are fixed. 

 

C.  Parameter Identification 

 

A model's weights are conventionally identified by 

performing maximum likelihood estimation. Given a 

training data set N
k

N kk 1)}(),({ == xyZ   the task is to 

find a weight vector which minimizes the following 

cost function:                                      
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As the model,  )),(( wxy k
)

, is nonlinear with respect to 

the weights, linear optimization techniques cannot be 

applied. Instead the popular Truncated Newton 

nonlinear optimization algorithm is employed. As an 

alternative a form of back fitting could be applied to 

models, but given the slow convergence times of  back 

fitting the direct approach is preferred. 

 

 

IV   FUZZY  MODEL-BASED  PREDICTIVE 

CONTROL 

 
In the last section we presented neuro-fuzzy systems. 

In this section we concentrate on employing these 

systems in model predictive control. Consider the 

following n inputs and m outputs model : 
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in which ),,( 1 myy
)

K
)

 are process outputs, 

),,,( 21 nuuu K  are control variables, sjc kmk )'(1  and 

),,1;2,1;2,1(' 211 knkmkmk njkksn K===  are the 

parameters and orders of the model.  The model 

parameters sjcknkm )'(  are constant for each given 

),,( 1 jkk m , since  (6) is a linear time-invariant model.    
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At time index (k), the controller needs to determine the 

control action ))(,),(( 1 kuku nK  based on feedback 

))(,),(( 1 kyky mK  to drive a process to reach the 

desired outputs ),,( 1 mrr K . In predictive control, 

prediction equations should be developed to predict the 

outputs.  (7) can directly yield the following recursive 

prediction equations, for  a two inputs with two outputs 

system. 
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where )1( ≥k  and with initials 
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where notations K)),(,( 211 jkujc − , emphasize that 

K),(11 jc , are dependent on ))(2 jku − . Since we are 

dealing with constrained linear MPC formulation,  to 

achieve a good control, it is required the following cost 

function to be minimized: 
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where 

)( matrixHessianQPthe
Tm

p
Tm

p
u

ΛΛ+ΓΓ= ξξH                 

and        

)()1()1( vectorgradientQPthekk
Tm

p +ΓΓ=+ eG ξ   

Solution of  (9) by a QP algorithm at each sampling 

interval (k) produces an optimal set of moves u(k) 

which satisfies the constraints.  Since 
u
H  is likely to be 

fixed at all sampling intervals, a parametric QP 

algorithm is used to reduce on-line computation time. 

 

 

V    MODEL PREDICTIVE  CONTROL  FOR 

NONLINEAR  PROCESSES 

 

The principal components of a linearized MPC system 

are a reference neuro-fuzzy model, process output 

predictor, optimization routines or an adaptation 

mechanism and MPC controller.    In this sense, the 

MPC embodies the linearized model parameters of the 

overall system. In practice, many nonlinear processes 

are approximated by reduced order models,  possibly 

linear,  which are clearly related to the underlying 

process characteristics. However, these models may 

only be valid within certain specific operating ranges. 

When operating conditions change, different model 

may be required to be employed or the model 

parameters may need to be adapted.  Our approach to 

the modeling of nonlinear processes (via neuro-fuzzy 

system) is to divide the whole envelope of process 

operation into several operating regions, hence to use a 

local reduced order model to approximate the process 

in each region.  The role of the MPC mechanism is to 

select the model and the tuning parameters of the 

controller in response to the error between the outputs 

of neuro-fuzzy reference model and plant [5].  

 

A. Linear Fuzzy Models 

 

A Takagi-Sugeno-Kang fuzzy model, is constructed 

typically from the following rules [6] : 
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where l
iC   are fuzzy sets, l

iC  are constants, and l = 

1,2, ... , m.   That is, the IF parts of the rules are the 

same as in the ordinary fuzzy IF-THEN  rules, but the 

THEN parts are linear combinations of the input 

variables. Given an input T
nuu ),,( 1 K=u , the output 

)(ky
)

 of a fuzzy system is computed as the weighted 

average of the sl 'y ,  that is, 
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In which the weights lw  are computed as 
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If an output of a fuzzy model appears as one of its 

input, we obtain a dynamic TSK fuzzy system.  A 

dynamic TSK fuzzy system is constructed from the 

following rules : 
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where pp
i BandA  are fuzzy sets, pp

i banda  are 

constants, p=1,2,...,N, u(k) is the input to the system, 

and Tnkkkk ))1(,),1(),(()( +−−= xxxx K  is the state 

vector of the system.  Hence output of the dynamic 

fuzzy system is computed as :   
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where )1( +kpx  is given in  (13)   and 
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Hence, one can express the Least-Squares solution of 

MPC equations as the following quadratic 

minimization problem,  with linear plant model 

obtained from the neuro-fuzzy system : 
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V   SIMULATION RESULTS 

 

The proposed technique has been successfully  applied 

to a multivariable nonlinear system, a pH 

neutralization. Results of simulated identification of the 

nonlinear dynamic plant using neuro-fuzzy are 

presented.  Hence, results of employing neuro-fuzzy 

model of Fig. 1. in predictive control systems are 

discussed at this stage. 

 

A. Neuro-Fuzzy System For a   pH  Reactor 

 

A pH neutralization reactor is a multivariable nonlinear 

process.  The process gains differ dramatically at 

different pH ranges.  The steady state relationship 

between acid flow rate ( 1f ) and pH (y) in the reactor 

shows a nonlinear relation.  It was found that the 

process gain is very high in the medium pH region, 

while it is quite low in both low and high pH regions.   

A neuro-fuzzy model is developed to model the 

nonlinear dynamic relationships between the acetic 

acid flow rate ( 1f ), the flow rate ( 2f ) and 

concentration ( 2c ) of sodium hydroxide and the pH in 

the reactor.  Such nonlinear relationship suggests that 

the process operation can be partitioned into several 

regions based on the reactor pH.  Hence, we first 

divided the process into three operating regions:  pH 

low,   pH medium,  and pH high. 

 

B. Neuro-Fuzzy Training 

 

To generate training and testing data, random 

perturbations are added to 321 , uanduu . Five hundred 

data points are generated as shown in Fig. 2.  After 

training the neuro-fuzzy system,  a typical identified 

fuzzy model for three regions are : 

 

1R :  If pH is low :  

 

)1(0337.0)1(0444.0

)1(0223.0)1(1837.0)(
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2R : If pH is medium :  

 

)1(2712.0)1(2777.0

)1(1912.0)1(201.0)(
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3R : If pH is high : 

 

  
)1(0243.0)1(0098.0

)1(0097.0)1(3028.0)(
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C. Membership Functions Identification 

 

The identified final membership functions are plotted 

in Fig. 3. to Fig. 4.  It is interesting to observe that the 

sharp changes of the training data surface around the 

origin is accounted for by the moving of the 

membership functions toward the origin. Changes of 

membership shape from initial to final shows that the 

fuzzy system has in fact made a correct understanding 

of how the fuzzy system list the fuzzy rules. 
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D.  Model Validation 

 

To validate the constructed fuzzy model output,   Fig. 

5. shows a comparison between the actual process 

output and model output.  From the figure it is clear 

how the process has been modeled with minimum 

error.  The fuzzy model is tested by some testing data. 

It can be seen that the fuzzy model is very accurate, it 

has an RMS error of 0.0988 for the training data.  

 

E.  Surface Plot of Fuzzy Rules and MPC Response 

 

In order to asset the behavior of the obtained fuzzy 

models, three dimensional plots of the fuzzy rules are 

viewed as shown in Fig. 6.  In this sense, the predictor 

(model) output is obtained via the summation of 

identified fuzzy regions.   Each fuzzy region over the 

entire 3D fuzzy surface represents a linear region.  For 

instant, in Fig. 6,  effect of  pH (k-1) and sodium flow 

at (k) on the pH (k) is obtained via the designation of 

the fuzzy membership functions (i.e. small, medium 

and large). A typical rule can then be written as linear 

summation as follows : 

 

If acid fl(k−1) is small  AND sdm fl(k−1) is large   

THEN  pH(k) is large. 

 

The pH Neutralization Plant system being examined by 

the neuro-fuzzy is a multivariable pH neutralization 

process.  In this respect,  Fig. 7 shows the associated 

MPC simulation for the process, at two required set-

points.  As the set-point changes, the process model 

also changes via the neuro-fuzzy system.  In this MPC 

simulation, (15) has been employed to compute the 

associated control signals  via the utilization of the 

linearized process model.   This depends entirely on the 

region within which the process is operating. 

 

VI   CONCLUSIONS 

 

Within this article we have introduced the basic 

structure of a fuzzy system and how the inter-layers are 

configured to model a  pH neutralization reactor plant.   

The modeling fuzzy network has shown great results in 

terms of reducing the prediction Root Mean Squared 

error.   Once fuzzy models are obtained, we validated 

the fuzzy models that operate over linearized plant 

region of operation.  In this respect, the fuzzy models 

have been employed to model linearized operating 

regions of the plant under linear model predictive 

control.  The employed algorithm produced fast 

settling time and convergence, in addition to a good 

fuzzy structure for modeling the nonlinear behavior of 

the plant under control. 
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Fig. 1.  Fuzzy system. 
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Fig. 2.  Training sets for pH neutralization system. 
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Fig.  3.  Final membership functions of the acid f1. 
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Fig.  4.  Final membership functions of the sdm. conc in  pH 

reactor plant. 
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 Fig. 5.  Creating Fuzzy model and actual pH output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Fig .6.  3-D plot of fuzzy rules,  and relation between 

pH(k−1),  sdmf1  and the process output  pH(k). 
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Fig. 7.  Fuzzy model predictive control for the pH 

neutralization reactor plant. 
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