
 

Soft-Decision Decoding of Systems with Tx/Rx Diversity 
Ahmed J. Jameel¹, Hadeel Adnan² and You Xiaohu² 

¹Department of Communication and Electronics Engineering, Faculty of Engineering,  
Al-Ahliyya Amman University, Amman 19328, Jordan 
²National Mobile Communications Research Laboratory 

Department of Communication Engineering, Southeast University, Nanjing 210096, China 
 

Abstract — In this paper, we describe the concatenation of 
Turbo/Convolutional codes with transmit and receive 
diversity schemes by using Space-Time Block Code. It is 
shown that, by using two transmit antennas and one/or two 
receive antenna, large coding gain for the bit error rate is 
achieved over the system without diversity. Simulation 
results show that, by using systems with transmit and 
receive diversity, high gain can be achieved with very low 
complexity. It turns out that at 4-10BER = , the gain of 9 
dB can be achieved for system using STTD transmit 
diversity only (without using any channel codes) and 2 dB 
gain can be achieved over channel coding systems using 
hard-decision decoding with much lower complexity. The 
most important conclusion is that, using soft-decision 
decoding systems enhanced with transmit diversity can 
provide very high coding gain; e.g., in convolutional coded 
system using soft-decision Viterbi decoder, the coding gain 
is 12 dB over uncoded system and 5 dB over hard-decision 
decoding in flat fading channel, while the coding gain is 
about 13 dB for turbo coded systems using soft-decision 
decoding based on SOVA algorithm with transmit 
diversity and the coding gain is 15 dB if the decoder is 
based on Log-MAP algorithm. In systems using transmit 
and receive diversity, the coding gain is much higher, e.g., 
for convolutional-coded systems, the coding gain is 20 dB, 
while for turbo-coded systems using SOVA and Log-MAP 
algorithms, the coding gain are a little more than 20 dB 
and 21 dB, respectively.  

Index Terms —  Space-Time Block Code, Turbo Codes, 
SOVA, Transmit diversity, Receive diversity. 

I. INTRODUCTION 

In future wireless communication systems, high data 
rates need to be reliably transmitted over time-varying 
bandlimited channels. The wireless channel mainly 
suffers from time-varying fading due to multipath 
propagation and destructive superposition of signal 
received over different paths, which make it hard for the 
receiver to reliably determine the transmitted signal 
unless some less attenuated replica of the signal are 
provided to the receiver. Transmitting the replica of the 
signal is called diversity. It is common for wireless 
systems to employ both diversity techniques and 
channel coding for error detection and/or correction. A 
widely applied technique to reduce the effects of 
multipath fading is antenna diversity. Usually, multiple 
antennas are used at the receiver with some kind of 
combining of the received signals, e.g., maximum ratio 
combining [1]. However, transmit and receive diversity 

techniques can be applied in the uplink and/or the 
downlink.  

In digital mobile communication systems, powerful 
channel coding is paramount to combat the effects of 
fading, interference and noise to obtain sufficient 
reception quality. Turbo codes [2], can achieve 
remarkable error performance at a low signal-to-noise 
ratio (SNR) with moderate decoding complexity. 

Recently, several schemes that combine space-time 
and Turbo codes were proposed. A scheme that 
combines a binary Turbo encoder with transmit antenna 
diversity was proposed in [3]. In [4], the outputs of 
parallel-concatenated TCM modules are routed to two 
separate antennas. This arrangement is a direct extension 
of [5], where the TCM modules are connected to a 
single antenna through a selector. A scheme that 
consists of two parallel-concatenated STCs was 
proposed in [6]. However, the scheme lacks a 
mechanism for puncturing the output resulting in Turbo 
codes with reduced data rates compared to the 
constituent codes. Schemes of serial concatenation of 
STCs and Turbo codes can be found in [7,8]. 

This paper is organized as follows. In section 2, the 
principles of space-time block codes are introduced. In 
section 3, soft-decision decoding of systems with 
transmit and receive diversity is described. The 
simulation results are presented in section 4, while we 
conclude in section 5.  

II. PRINCIPLES OF SPACE-TIME BLOCK CODE 

In this section, we review the theory of space-time block 
code by considering the classic MRC technique [9,10].  

A. Classical Maximum Ratio Combining 

Figure 1 shows the baseband representation of the 
classic MRC technique in conjunction with two 
receivers. At a particular instant, a symbol x  is 
transmitted. As we can see from the figure, the 
transmitted symbol x  propagates through two different 
channels, namely, 1h  and 2h . For simplicity, all 
channels are assumed to be constituted of a single 
nondispersive or flat-fading propagation path and can be 
modeled as complex multiplicative distortion, which 
consists of a magnitude and phase response given by 
[9,10] 
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where 1h , 2h are the fading magnitudes and 1θ , 2θ  
are the phase values. Each receiver, as shown in Figure 
1, adds noise. Hence, the resulting received baseband 
signals are 

111 nxhy +=                               (3) 

222 nxhy +=                              (4) 
where 1n  and 2n  are complex noise samples. In matrix 
form, this can be written as 
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Assuming that perfect channel information is available, 
the received signals 1y  and 2y  can be multiplied by the 

conjugate of the complex channel transfer functions 1h  

and 2h , respectively, in order to remove the channel’s 
effects. Then, the corresponding signals are combined at 
the input of the maximum likelihood detector of Figure 
1 according to 
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Figure 1: Baseband representation of the MRC 

technique using two receivers. 
The combined signal x~  is then passed to the maximum 
likelihood detector, as shown in Figure 1. The most 
likely transmitted symbol is determined by the 
maximum likelihood detector based on the Euclidean 
distances between the combined signal x~  and all 
possible transmitted symbols. The simplified decision 
rule is based on choosing ix  if and only if 

jixxdistxxdist ji ≠∀≤ ),,~(),~(             (7) 
where ),( βαdist  is the Euclidean distance between 
signals α  and β  and the index j  spans all possible 
transmitted signals. From (7), we can see that maximum 
likelihood transmitted symbol is the one having the 
minimum Euclidean distance from the combined signal 
x~ . 

B. Transmission Model and Diversity Criterion 

In analogy to the MRC matrix formula of (5), a STB 
code describing the relationship between the original 
transmitted signal x  and the signal replicas artificially 
created at the transmitter for transmission over various 
diversity channels is defined by an pn×  dimensional 
transmission matrix. The entries of the matrix are 
constituted of linear combinations of the k -ary input 
symbols kxxx ,,, 21 …  and their conjugates. The k -ary 
input symbols kixi ,,1, "=  are used to represent the 
information-bearing binary bits to be transmitted over 
the transmit diversity channels. In a signal constellation 
having b2  constellation points, a number b  of binary 
bits are used to represent a symbol ix . Hence, a block of 

bk ×  binary bits is entered into the STB encoder at a 
time and it is, therefore, referred to as a STB code. The 
number of transmitter antennas is p  and n  represents 
the number of time slots used to transmit k  input 
symbols. Hence, a general form of the transmission 
matrix of a STB code is written as  
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where the entries ijg  represent linear combinations of 
the symbols kxxx ,,, 21 …  and their conjugates. More 
specifically, the entries ijg , where pi ,,1"=  are 
transmitted simultaneously from transmit antennas 

p,,1…  in each time slot nj ,,1…= . For example, in 
time slot 2=j , signals 22212 ,,, pggg …  are transmitted 
simultaneously from transmit antennas TxpTxTx ,,2,1 … . 
We can see in the transmission matrix defined in (8) that 
encoding is carried out in both space and time; hence, 
the term space–time coding. The pn×  transmission 
matrix in (8) (which defines the STB code) is based on a 
complex generalized orthogonal design, as defined in 
[11]. Since there are k  symbols transmitted over n  
time slots, the code rate of the STB code is given by 

nkR = .                                (9) 
At the receiving end, one can have an arbitrary 

number of q  receivers. It was shown in [6] that the 
associated diversity order is qp × . A combining 
technique similar to MRC can be applied at the 
receiving end, which may be generalized to q  receivers.  

C. Decoding Algorithm of Space–Time Block Code 

A simple transmit diversity scheme for two transmit 
antennas was introduced by Alamouti in [9]. The 
transmission matrix is 
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We can see in the transmission matrix 2G  that there 
are 2=p  (number of columns in the matrix 2G ) 
transmitters, 2=k  possible input symbols, namely, 

21, xx , and the code spans over 2=n  (number of rows 
in the matrix 2G ) time slots. Since 2=k  and 2=n , 
the code rate given by (9) is unity.  
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Figure 2: Simple two-transmitter STB code 2G  using 

one receiver. 

Figure 2 shows the baseband representation of a 
simple two-transmitter STB code, namely, that of the 

2G  code seen in (10) using one receiver. We can see 
from the figure that there are two transmitters, namely, 

1Tx  as well as 2Tx  and they transmit two signals 
simultaneously. As mentioned earlier, the complex 
fading envelope is assumed to be constant across the 
corresponding two consecutive time slots. Therefore, 
one can write 

)2()1( 111 ==== ThThh                   (11) 
)2()1( 222 ==== ThThh                  (12) 

At the receiver, independent noise samples are added 
in each time slot; hence the signals received over 
nondispersive or narrow-band channels can be expressed 
with the aid of (10) as 

122111 nxhxhy ++=                  (13) 

212212 nxhxhy ++−=                  (14) 
where 1y  is the first received signal and 2y  is the 
second. Note that the received signal 1y  consists of the 
transmitted signals 1x  and 2x , while 2y  consists of 
their conjugates. In order to determine the transmitted 
symbols, we have to extract the signals 1x  and 2x  from 
the received signals 1y  and 2y . Therefore, both signals 

1y  and 2y  are passed to the combiner, as shown in 
Figure 2. In the combiner-aided by the channel 
estimator, which provides perfect estimation of the 
diversity channels in this example-simple signal 
processing is performed in order to separate the signals 

1x  and 2x . Specifically, the maximum likelihood 
detection minimizes the decision metric 

2
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over all possible values of 1x  and 2x . We expand the 
above metric and delete the terms that are independent 
of the codewords and observe that the minimization is 
equivalent to minimizing 
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The above metric decomposes into two parts, one of 
which 
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is only a function of 1x , and the other one  
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is only a function of 2x . Thus the minimization is 
equivalent to minimizing these two parts separately. 
This in turn is equivalent to minimizing the decision 
metric 
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for detecting 1x  and the decision metric 
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for decoding 2x . From equations (19) and (20), we can 
obtain the “optimum” soft values of the codewords 1x  
and 2x  as follows: 

( )22111ˆ yhyhx +=                (21) 

( )21122ˆ yhyhx −=                (22) 
Clearly, from (21) and (22), we can see that we have 

separated the signals 1x  and 2x  by simple 
multiplications and additions. Due to the orthogonality 
of the STB code 2G  in (10) [11], the unwanted signal 

2x  is canceled out in (21) and vice versa, signal 1x  is 
removed from (22). In hard-decision decoding, both 
signals 1x̂  and 2x̂  are passed to the maximum likelihood 
detector, which applies (7) to determine the most likely 
transmitted symbols. 

There may be applications where a higher order of 
diversity is needed and multiple receive antennas at the 
remote units are feasible. In such cases, it is possible to 
provide a diversity order of 4 with two transmit and two 
receive antennas. The encoding and transmission 
sequence of the information symbols for this 
configuration is identical to the case of a single receiver. 
Then, the received signals at the second receive antenna 
will be: 

324133 nxhxhy ++=               (23) 

414234 nxhxhy ++−=             (24) 



where 3n  and 4n  are complex random variables 
representing receiver thermal noise and interference. 
The combiner at the receiver builds the following two 
soft values of the codewords 1x  and 2x  as follows [9]: 

( )443322111ˆ yhyhyhyhx +++=       (25) 

( )433421122ˆ yhyhyhyhx −+−=        (26) 
As before, in hard-decision decoding, both signals 1x̂  

and 2x̂  are passed to the maximum likelihood detector, 
which applies (7) to determine the most likely 
transmitted symbols. 

III. SOFT-DECISION DECODING OF SYSTEMS 
WITH TRANSMIT AND RECEIVE DIVERSITY 

A. Serially Concatenated Coded Systems 

We can concatenate a secondary channel encoder 
before the STBC transmitter and concatenate its decoder 
to the STBC receiver. The outer encoder is a classical 
non-recursive non-systematic convolutional code. 
Between outer encoder and inner encoder, we can insert 
an interleaver to decorrelate the burst errors produced by 
correlated fading. A block diagram of such system is 
shown in Figure 3. 

If the output of the STBC decoder is hard, then hard-
decision decoding is made in the outer decoder. If the 
output of the STBC decoder is soft, then soft-decision 
decoding is made in the outer decoder. If the outer code 
is convolutional encoder and its decoder use soft-
decisions Viterbi decoder, then the STBC decoder must 
be soft output. Since STBC combats the fading by 
antenna diversity, the outer code combats the AWGN to 
achieve additional coding gain. To complete the 
decoding, the soft values must be deinterleaved and sent 
to the soft-decision Viterbi decoder. 

Convolutional
Encoder Interleaver Modulator STTD

Encoder

Input
Data

Soft-Output
STTD Decoder

Soft-Output
Demodulator

De-
Interleaver

Soft-Decision
Viterbi
Decoder

Output
Data

Figure 3: A block diagram of the concatenated system. 

 

B. Iterative (Turbo) Decoding Strategy 

We consider the channel code and the MIMO channel as 
a serially concatenated scheme [12], with an outer 
channel encoder (typically a convolutional or turbo 
code), interleaver, and inner space-time block encoder. 
The iterative decoding method is a well established 
method in decoding bits encoded by turbo encoders. The 
main idea is based on two individually optimal steps that 
can be iteratively repeated. Therefore, we are often 

content to solve the problems of having the MIMO 
detector incorporate soft reliability information provided 
by the channel decoder, and the channel decoder 
incorporate soft information provided by the MIMO 
detector. Information between the detector and decoder 
is then exchanged in an iterative fashion until desired 
performance is achieved. While this iterative process is 
not strictly optimal, it has been shown that the “turbo 
principle” is very effective and computationally efficient 
in other joint detection/decoding problems [13]. 

In the first step, from the channel samples we 
compute the a posteriori log-likelihood ratios of the 
coded symbols for each transmit antenna. 
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Figure 4: Iterative detection and decoding for a system 
with transmit diversity. 

 
Since we have samples from the receive antennas, and 

we want to compute soft values for the bits that are 
transmitted on the MIMO channel, this module can be 
interpreted as a  multiple soft-in soft-out  a  posteriori 
probabilities estimator.  In the second step, the  a  
posteriori  log-likelihood ratios  of  the  coded bits  are  
deinterleaved and  fed  to  the outer SISO decoder [12]. 
The SISO decoder provides both the log-likelihood 
ratios of the information bits )( ibL , and new/improved 
log-likelihood ratios of the coded bits )( ie cL . 
Following the iterative decoding principle [13], extrinsic 
log-likelihood ratios of the coded bits are computed by 
subtracting the decoder inputs from the decoder outputs, 

)()()( iaiie cLcLcL −= . This is to minimize the 
correlation with previously computed soft values.  The 
extrinsic values are interleaved and fed back to the 
space-time decoder/demodulator where they are used in 
a new iteration as an estimate of the a priori log-
likelihood ratios of the coded bits )( ia dL . Extrinsic 
information is also computed at the space-time 
decoder/demodulator output, )()()( iaiie dLdLdL −= . 
By repeating several times the above procedure, the 
performance of the system is greatly improved. In the 
final iteration, the decoded sequence of information bits 
is obtained by making hard decisions on )( ibL . 

IV. SIMULATION RESULTS 

Simulations were carried out for frames sizes of 384 
bits and transmission of 1 bit/s/Hz using QPSK 
modulation combined with rate 21  Turbo/or 



 

convolutional encoder. We used two transmit antennas 
and one/or two receive antenna applying the space-time 
block code 2G  in quasi-static fading, i.e. the channel is 
constant during transmission of one coded modulation 
block and changes from one block to the next 
independently.  

 
 

A. Simulations for uncoded systems with transmit and 
receive diversity 

• The first experiment is for a system using transmit 
diversity only (2T-1R), at 4-10BER = , the diversity 
gain is 9 dB over uncoded system.  

• The second experiment is for a system using transmit 
and receive diversity only (2T-2R), at 4-10BER = , 
the diversity gain is 18 dB over uncoded system and 9 
dB over the 2T-1R system. 

B. Simulations for convolutional-coded systems with 
diversity 

• The third experiment is for a system using 
convolutional encoder and hard-decision decoding 
without diversity, at 4-10BER = , the coding gain is 7 
dB over uncoded system. 

• The fourth experiment is for coded systems using 
convolutional encoder and soft-decision Viterbi 
decoder with transmit diversity (coded 2T-1R), at 

4-10BER = , the coding gain is 12 dB over uncoded 
system and 5 dB over hard-decision decoding. 

• The fifth experiment is for coded systems using 
convolutional encoder and soft-decision Viterbi 
decoder with transmit and receive diversity (coded 
2T-2R), at 4-10BER = , the coding gain is 20 dB over 
uncoded system, 8 dB over convolutional coded 
system with transmit diversity only (2T-1R). 

These results are shown in Figure 5. At 5-10BER = , we 
can see that the coding gain of the system using 
convolutional code with transmit and receive diversity 
over the coded system with transmit diversity only is 10 
dB, while the coding gain is 14 dB over the system with 
transmit diversity only.  

C. Simulations for turbo-coded systems with diversity 

• The sixth experiment is for coded systems using turbo 
encoder and SOVA decoder with transmit diversity 
(coded 2T-1R), at 4-10BER = , the coding gain is 
13.5 dB over uncoded system and 7 dB over hard-
decision decoding. 

• The seventh experiment is for coded systems using 
turbo encoder and SOVA decoder with transmit and 
receive diversity (coded 2T-2R), at 4-10BER = , the 
coding gain is more than 20 dB over uncoded system, 
7 dB over turbo coded system with transmit diversity 
only (2T-1R). 

These results are shown in Figure 6. At 5-10BER = , we 
can see that the coding gain of the system using turbo 
code with transmit and receive diversity over the 
coded system with transmit diversity only is 9 dB, 
while the coding gain is 14.5 dB over the system with 
transmit diversity only.  

• The eighth experiment is for coded systems using 
turbo encoder and Log-MAP decoder with transmit 
diversity (coded 2T-1R), at 4-10BER = , the coding 
gain is 15 dB over uncoded system and 8 dB over 
hard-decision decoding. 

• The ninth experiment is for coded systems using turbo 
encoder and Log-MAP decoder with transmit and 
receive diversity (coded 2T-2R), at 4-10BER = , the 
coding gain is more than 21 dB over uncoded system, 
6 dB over turbo coded system with transmit diversity 
only (2T-1R). 

These results are shown in Figure 7. At 5-10BER = , we 
can see that the coding gain of the system using turbo 
code with transmit and receive diversity over the coded 
system with transmit diversity only is 10 dB, while the 
coding gain is 15 dB over the system with transmit 
diversity only.  

V. CONCLUSIONS 

In this paper, we have described the concatenation of 
Turbo/Convolutional codes with transmit and receive 
diversity schemes by using Space-Time Block Code. It 
is shown that, by using two transmit antennas and one/or 
two receive antenna, large coding gain for the bit error 
rate and frame error rate are achieved over the system 
without diversity. This scheme is expected to provide 
diversity improvement at all the remote units in the 
wireless communication system.  

From the simulation results, we conclude that, using 
systems (coded or uncoded) with transmit and receive 
diversity, high gain can be achieved with very low 
complexity. It turns out that at 4-10BER = , the gain of 
9 dB can be achieved for system using STBC transmit 
diversity only (without using any channel codes) and 2 
dB gain can be achieved over channel coding systems 
using hard-decision decoding with much lower 
complexity. The most important conclusion is that, 
using soft-decision decoding systems enhanced with 
transmit diversity can provide very high coding gain; 
e.g., in convolutional coded system using soft-decision 
Viterbi decoder, the coding gain is 12 dB over uncoded 
system and 5 dB over hard-decision decoding in flat 
fading channel, while the coding gain is about 13 dB for 
turbo coded systems using soft-decision decoding based 
on SOVA algorithm with transmit diversity and the 
coding gain is 15 dB if the decoder is based on Log-
MAP algorithm. In systems using transmit and receive 
diversity, the coding gain is much higher, e.g., for 
convolutional-coded systems, the coding gain is 20 dB, 
while for turbo-coded systems using SOVA and Log-
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MAP algorithms, the coding gain are a little more than 
20 dB and 21 dB, respectively.  
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Figure 5: BER curves of convolutional-coded system 
with transmit and receive diversity. 
 

Figure 6: BER of turbo-coded system with transmit 
and receive diversity using SOVA. 

Figure 7: BER of turbo-coded system with transmit 
and receive diversity using Log-MAP. 
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