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Abstract 

 
Neural networks are parameterized nonlinear functions. Their parameters are the 

weights and biases of the network. Adjustment of these parameters results in 

different shaped nonlinearities. Typically these adjustments are achieved by a 

gradient descent approach on an error function that measures the difference 

between the output of the neural network and output of the actual system. 

Additionally there is no restriction on the unknown function to be linear. In this 

way, neural networks provide a logical extension to create nonlinear robust 

control schemes where there is no need to assume that the plant is a linear 

parameterization of known nonlinear functions. 

 

These features of the Neural Networks make them an important area of 

research. We find Neural Networks applications in a variety of areas. They are 

used mainly for the purpose of identification and control. This report focuses on 

some advanced applications of Neural Networks in the area of nonlinear plant 

identification and adaptive control. 
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111   Introduction to Neural Networks  

1.1 Introduction 

Work on artificial neural networks commonly referred to as "neural networks" 

(NN) has been motivated right from its origin by the recognition that the human 

brain computes in an entirely different way then the conventional computer. The 

brain is a highly complex, nonlinear and parallel computer (information 

processing system). It has the capability to organize its structural constituents, 

known as neurons, so as to perform certain computations (e.g. pattern 

recognition, perception, and motor control) many times faster than the fastest 

digital computer in existence today. Consider for example, human vision, which is 

an information-processing task. It is the function of the visual system to provide a 

representation of the environment around us and, more important, to supply the 

information we need to interact with the environment. To be specific, the brain 

routinely accomplish perceptual recognition task (e.g. recognizing a familiar face 

embedded in an un-familiar scene) in approximately 100-200 ms, where as tasks 

of much lesser complexity may take days on a conventional computer.   

 

How, then, does a human brain do it? At birth, a brain has great structure and the 

ability to built-up its own rules through what we usually refer to as "experience". 

Indeed, experience is built up over time, with the most dramatic development (i.e. 

hard wiring) of the human brain taking place during the first two years from birth: 

but the development continues well beyond that stage. 

 

A "developing" neuron is synonymous with a plastic brain: Plasticity permits the 

developing nervous system to adapt to its surrounding environment. Just as 

plasticity appears to be essential to the functioning of neurons as information-

processing units in the human brain, so it is with neural networks made up of 

artificial neurons. In its most general form, a neural network is a machine that is 

designed to model the way in which the brain performs a particular task or 

function of interest; the network is usually implemented by electronic components 
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or is simulated in software on a digital computer. The interest is confined to an 

important class of neural networks that perform useful computations through a 

process of learning. To achieve good performance, neural networks employ a 

massive interconnection of simple computing definition of a neural network 

viewed as an adaptive machine. 

 

A neural network is a massively equivalent distributed process or made up of 

simple processing units, which has a natural propensity for storing experiential 

knowledge and making it available for use. It resembles the brain in two respects: 

 

 Knowledge is acquired by the network from its environment through a 

learning process.               

 Inter neuron connection strengths, known as synaptic weights, are used to 

store the acquired knowledge.     

 

1.2 Neuron & Artificial Neuron 

The two figures 1 & 2 compare the human neuron and the artificial neuron. For 

the human neuron the main functioning parts are: 

 

 

Figure 1: Human Neuron 
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 Dendrites: These act as the input points to the main body of the neuron. 

 Synapse: This is the storage area of the past experience. 

 Soma: It receives synaptic information and performs further processing on 

the information. 

 Axon: This is the output line for the neuron. 

 

 

Figure 2: Artificial Neuron 

 

In artificial neural networks, the synaptic and somatic operations are emulated as 

follows: 

 

 Synaptic Operation: The input weights act as storage for knowledge (and 

therefore, as memory for previous experiences). 

 Somatic Operation: The somatic operation is provided by various 

mathematical operations such as aggregation, thresholding, nonlinear 

activation and dynamic processing to the synaptic inputs. 

 

1.3 Adaptation in NN’s 

The procedure that is used to perform the learning process is called a learning 

algorithm (fig. 3), the function of which is to modify the synaptic weights of the 

network in an orderly fashion to attain a desired design objective.  
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Figure 3: Adaptation in NN’s 

The modification of synaptic weights provides the traditional method for the 

design of neural networks. Such an approach is the closest to linear adaptive 

filter theory, which is already well established and successfully applied in many 

diverse fields. However, it is also possible for a neural network to modify its own 

topology, which is motivated by the fact that neurons in the human brain can die 

and then new synaptic connections can grow. 

   

1.4 COMMON NEURAL NETWORK ARCHITECTURES 

The manner in which the neurons of a neural network are structured is intimately 

linked with the learning algorithm used to train the network. We may therefore 

speak of algorithms (rules) used in the design of neural networks as being 

structured. In general we may identify three fundamentally different classes of 

network architectures: 
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1.4.1 Single-Layer Feed-forward Networks  

In a layered neural network the neurons are organized in the form, of layers. In 

the simplest form of layered network, we have an input layer of source nodes that 

projects onto an output layer of neurons (computation nodes), but not vise versa. 

In other words, this network is strictly a feed-forward or acyclic type. It is 

illustrated in the figure for the case if four nodes in both the input and output 

layers. Such a network is called a single-layered network, with the name "single-

layer" referring to the output layer of computation nodes (neurons). We do not 

count the input layer of source nodes because no computation is performed 

there. 

 

Figure 4: Single Layer Feedforward NN  

1.4.2 Multilayer Feed-Forward Networks   

The second class of a feed-forward neural network distinguishes its self by the 

presence of one or more hidden layers, whose computation nodes are 

correspondingly called hidden neurons or hidden units. The function of the 

hidden neuron is to interfere between the external input and the network output in 

some useful manner.  

 

Multilayer feed forward networks are an important class of neural networks. 

Typically, the network consists of a set of sensory units (source nodes) that 

constitute the input layer, one or more hidden layers of computation nodes, and 
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an out-put layer of computation nodes. The input signal propagates through the 

network in a forward direction, on a layer-by-layer basis. These neural networks 

are commonly referred to as multilayer perceptrons (MLP’s), which represent a 

generalization of the single-layer perceptron. 

The source nodes in the input layer of the network supply respective elements of 

the activation pattern (input vector), which constitute the input signals applied to 

the neurons (computation nodes) in the second layer (i.e., the first hidden layer). 

The output signals of the second layer are used as an input to the third layer, and 

so on for the rest of the network. Typically the neurons at each layer of the 

network have as there inputs the outputs of the preceding layers only. The set of 

output signals of the neurons in the output (final layer) constitutes the over all 

response of the network to the activation pattern supplied by the source nodes in 

the input (first) layer.  

 

Multilayer perceptrons have been applied successfully to solve some difficult and 

diverse problems by training them in a supervised manner with a highly popular 

algorithm known as the error back-propagation algorithm. This algorithm is based 

on the error-correction learning rule. As such, it may be viewed as a 

generalization of an equally popular adaptive filtering algorithm: the least-mean-

square (LMS) algorithm.  

 

Basically, error back-propagation learning consists of two passes through the dif-

ferent layers of the network: a forward pass and a backward pass. In the forward 

pass, an activity pattern (input vector) is applied to the sensory nodes of the 

network, and its effect propagates through the network layer by layer. Finally, a 

set of outputs is produced as the actual response of the network. During the 

forward pass the synaptic weights of the networks are all fixed. During the 

backward pass, on the other hand, the synaptic weights are all adjusted in 

accordance with an error-correction rule. Specifically, the actual response of the 

network is subtracted from a desired (target) response to produce an error signal. 

This error signal is then propagated backward through the network, against the 
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direction of synaptic connections, hence the name "error back-propagation." The 

synaptic weights are adjusted to make the actual response of the network move 

closer to the desired response in a statistical sense. The error back-propagation 

algorithm is also referred to in the literature as the back-propagation algorithm. 

 

Figure 5 shows the architectural graph of a multilayer perceptron with two hidden 

layers and an output layer. Signal flow through the network progresses in a 

forward direction, from left to right and on a layer-by-layer basis. 

 

Figure 5: Multi-layer Feedforward NN’s 

The neural network in the figure is said to be fully connected in the sense that 

every node in each layer of the network is connected to every other node in the 

adjacent forward layer. If, however, some of the communication links are missing 

from the network, we say that the network is partially connected.  

1.4.3 Recurrent Networks 

A recurrent neural network distinguishes itself from the feed-forward network in 

that it has at least one feedback loop. For example, a recurrent network may 

consist of a single layer of neurons with each neuron feeding its output signal 

back to the input of all input neurons.  

 

The presence of feedback loops has a profound impact on the learning capability 

of the network and on its performance. Moreover, the feedback loops involve the 
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use of particular branches composed of unit-delay elements which result in a 

nonlinear dynamical behavior, assuming that the neural network contains 

nonlinear units.                    

1.5 Applications of Neural Networks 

Neural networks are applicable in virtually every situation in which a relationship 

between the predictor variables (independents, inputs) and predicted variables 

(dependents, outputs) exists, even when that relationship is very complex and 

not easy to articulate in the usual terms of "correlations" or "differences between 

groups." A few representative examples of problems to which neural network 

analysis has been applied successfully are:  

 

 Detection of medical phenomena. A variety of health-related indices 

(e.g., a combination of heart rate, levels of various substances in the 

blood, respiration rate) can be monitored. The onset of a particular 

medical condition could be associated with a very complex (e.g., nonlinear 

and interactive) combination of changes on a subset of the variables being 

monitored. Neural networks have been used to recognize this predictive 

pattern so that the appropriate treatment can be prescribed.  

 

 Stock market prediction. Fluctuations of stock prices and stock indices 

are another example of a complex, multidimensional, but in some 

circumstances at least partially-deterministic phenomenon. Neural 

networks are being used by many technical analysts to make predictions 

about stock prices based upon a large number of factors such as past 

performance of other stocks and various economic indicators.  

 

 Credit assignment. A variety of pieces of information are usually known 

about an applicant for a loan. For instance, the applicant's age, education, 

occupation, and many other facts may be available. After training a neural 

network on historical data, neural network analysis can identify the most 
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relevant characteristics and use those to classify applicants as good or 

bad credit risks.  

 

 Condition Monitoring. Neural networks can be instrumental in cutting 

costs by bringing additional expertise to scheduling the preventive 

maintenance of machines. A neural network can be trained to distinguish 

between the sounds a machine makes when it is running normally ("false 

alarms") versus when it is on the verge of a problem. After this training 

period, the expertise of the network can be used to warn a technician of 

an upcoming breakdown, before it occurs and causes costly unforeseen 

"downtime."  

 

 Engine management. Neural networks have been used to analyze the 

input of sensors from an engine. The neural network controls the various 

parameters within which the engine functions, in order to achieve a 

particular goal, such as minimizing fuel consumption. 

 

 Signature analysis, as a mechanism for comparing signatures made 

(e.g. in a bank) with those stored. This is one of the first large-scale 

applications of neural networks in the USA, and is also one of the first to 

use a neural network chip.  

 

 Process control, most processes cannot be determined as computable 

algorithms. Neural Networks can be used to adaptively control the process 

 

 Nonlinear Identification & Adaptive Control, This is one of the main 

areas of application of the neural networks. Neural Networks find 

applications in situations where the plant dynamics are uncertain or un-

modeled.  
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222   LMS and RBF-NN’s 

2.1 The Least Mean Square (LMS) Adaptation Algorithm 

As discussed in section 1, the learning process in the neurons involves updating 

of certain “weights”. A number of adaptation algorithms are available in literature. 

The criteria/cost functions used for adaptation and the methods are usually 

derived from the richly developed field of adaptive filter theory. In the following 

we present one of the most commonly used adaptation algorithms, the LMS.  

 

Let: 

 

][nw :  time varying neuron tap weights 

][nv :  input to neuron 

][nd :  desired response 

[ ]ns~ :  actual output of neuron 

J  :  cost function (the mean square error) 

 

The estimation error is the difference between the desired response and the 

estimated output: 

 

][~][][ nsndne −=  
 

using   ][][~ nvwns H=   gives, 

 

][][][ nvwndne H−=  
 

The mean square error (cost function) is defined as: 

 

{ } { }22 ][][][ nvwndEneEJ H−==  
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Thus the cost function J is a function of vector w. Minimizing J with respect to the 

complex tap weights w leads to the set of equations called the Wiener-Hopf 

equations. If we limit the number of taps to M then we obtain the matrix 

formulation of the Wiener- Hopf equations from which the solution is obtained as 

 

pRwo
1−=  

 

where 

{ }][][ nvnvER H=      and    { }][][ * ndnvEp =  

 

This method of solution requires inversion of a matrix. An alternative adaptive 

method of solution is the Steepest Descent algorithm. It can be shown that the 

cost function J has the shape of an M-dimensional bowl whose minimum is at the 

optimal solution of w. The steepest descent algorithm moves the tap weights 

towards the minimum of the J bowl at every iteration by moving them in the 

direction opposite to the gradient vector: 

 

 

pRwJw 22 −=∇  
 

Thus we have an iterative definition for the tap weight updates: 

 

Jnwnw w∇−=+
2

][]1[ µ

 
]][[][ nRwpnw −+= µ  

 

µ is known as the adaptation step. (µ > 0) 

In practice, although we do not know R and p, we can use their instantaneous 

estimates: 
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][][][ˆ nvnvnR H=  
][][ˆ * ndnvp =  

This approach is known as the Least Mean Squares (LMS) method which is a 

member of a particular class of algorithms called the stochastic gradient 

algorithms. Thus the adaptation equation is given as: 

 

][][][ˆ]1[ˆ * nenvnwnw µ+=+  
As we shall see, this equation is used in a variety of adaptation algorithms each 

having its own definition for the error functions.  

2.2 RBF Neural Networks 

Among the vast variety of neural networks, the RBF-NN is a quire commonly 

used structure. The design of a RBF-NN in its most basic form consists of three 

separate layers. The input layer is the set of source nodes (sensory units). The 

second layer is a hidden layer of high dimension. The output layer gives the 

response of the network to the activation patterns applied to the input layer. The 

transformation from the input space to the hidden-unit space is nonlinear. On the 

other hand, the transformation from the hidden space to the output space is 

linear. 

 

 

Figure 6: RBF-NN Basic Structure 
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With reference to the figure above, the output y(t) is a weighted sum of the 

outputs of the hidden layer, given by 

 

1

ˆ ( ) ( ( ) ),
n

i i
i

y t w u t cφ
=

= −∑
    (3.3) 

where 

( )u t  is the input 

( ).φ  is an arbitrary nonlinear radial basis function 

.     denotes the norm that is usually assumed to be Euclidean 

ic      are the known centers of  the radial basis functions 

iw     are the weights 

 

Radial functions are a special class of functions. Their characteristic feature is 

that their response decreases (or increases) monotonically with distance from a 

central point and they are radially symmetric. The centre, the distance scale, and 

the precise shape of the radial function are parameters of the model. There are a 

variety of radial functions available in literature. The most commonly used one is 

the Gaussian radial filter, which in case of a scalar input is 

 
2

2

( )( ) exp( )x ch x
β
−

= −
 

 

Its parameters are its centre c and its radius β  (width), Figure 1.3 illustrates a 

Gaussian RBF with centre c = 0 and radius β = 1. A Gaussian RBF 

monotonically decreases with distance from the centre  
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Figure 7: Gaussian function Profile 

A summary of the characteristics of the RBF-NN’s is given below 

  

 They are two-layer feed-forward networks. 

 The hidden nodes implement a set of radial basis functions (e.g. Gaussian 

functions). 

 The output nodes implement linear summation functions as in an MLP. 

 The network training is divided into two stages: first the weights from the 

input to hidden layer are determined, and then the weights from the 

hidden to output layer. 

 The training/learning is very fast. 

 The networks are very good at interpolation. 

 

2.3 DETAILED LEARNING ALGORITHM FOR RBF-NN’s 

The whole algorithm of RBF network learning may be split into two phases: 

 Hidden layer learning or basis function selection (unsupervised learning). 

 Fitting of outputs in a transformed feature space (supervised learning). 

2.3.1 Unsupervised learning  

The first phase is an unsupervised learning. It does not use any information on 

target outputs and deals only with a set of inputs. At this stage we have to: 
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1. Select a number of radial basis functions. 

2. Select a center for each basis function and 

3. Select a value for the parameter β (width), which characterizes the basis 

function range of definition (the range of its influence). A too large value of β  

forms too narrow basis functions. 

 

In step1, usually all the RBF’s are chosen to be the same. There are many 

algorithms available for the selection of the centers (step-2), one of the more 

popular ones is the K-means clustering algorithm which goes as follows 

 

Given m data points, select l as the number of clusters such that l < m 

 

Take the first l learning data as the center vectors for the l clusters 

, 1, 2,...., ;j jc x j l= =  
Assign the remaining data points to one of the clusters with the least distance 

criterion. Recompute the center vectors using the new mean, that is 

1 ; 1
j

j j
i cj

c x
m ∈

j l= ≤ ≤∑
 

where mj is the number of data points belonging to the jth cluster. 

 

As soon as the clustering algorithm is complete we may move to the selection of 

the variance or width parameter β (step-3). These parameters control the 

amount of overlap of the radial basis functions as well as the network 

generalizations. A small value yields a rapidly decreasing function, whereas a 

large value results in a more gently varying function. The mostly commonly used 

method for the selection of the width parameter for a cluster is to take it equal to 

the average distance between the data in the cluster and center of the cluster. 
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2.3.2 Supervised Learning 

The second phase is a supervised learning. The goal is to fit outputs with a linear 

function of nonlinear transformed inputs. Any gradient optimization method may 

be used, but the LMS (discussed above) is used most often. 

 

2.4 Relative Advantages of RBF-NN’s 

 Many pattern recognition experiments show that the RBF-NN’s are 

superior over other neural network approaches in the following senses.  

 RBF-NN’s are capable of approximating nonlinear mappings effectively.  

 The training time of the RBF-NN’s is quite low compared to that of other 

neural network approaches such as the multi-layer perceptron. 

 The RBF-NN’s produce classification accuracies from 5% to 10% higher 

than accuracies produced by the back propagation algorithm. 

 The RBF-NN’s are quite successful for identifying regions of sample data 

not in any known class because they use a non-monotonic transfer 

function based on the Gaussian density function.  
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333   Neural Network Applications 

3.1 Nonlinear Plant Identification 

One of the major areas of application of the neural networks is in the 

identification of nonlinear plants. The RBF-NN was introduced in section 2. Here 

we make use of the Gaussian RBF-NN to identify the nonlinear system known as 

the continuous stirred tank reactor. The nonlinear model of the continuous stirred 

tank reactor when the sampling time is chosen as 0.05 seconds is as follows. 

 
2 3 4

2 3 2

2 2 2 3

( 1) 0.8606 ( ) 0.0401 ( ) 0.0017 ( ) 0.000125 ( ) 0.0464 ( )
0.045 ( ) ( ) 0.0034 ( ) ( ) 0.00025 ( ) ( ) 0.0012 ( )

0.0013 ( ) ( ) 0.0001458 ( ) ( ) 0.00002083 ( ) 0.00002083 ( ) ( )

y t y t y t y t y t u t
y t u t y t u t y t u t u t
y t u t y t u t u t y t u t

+ = − + − +

− + − − +

− + − 3

 

 

 

Figure 8: Identification Structure 

The RBF-NN assumes no prior knowledge of the system parameters and tries to 

identify the system online. Simulations were carried out using SIMULINK. The 

number of linear combiner weights was chosen to be ten. The neural network 

worked well and was able to identify the nonlinear plant online. The simulation 

results are given in the figures 9 & 10.  

 

 

 

 20



0 20 40 60 80 100 120 140 160 180 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time

Plant Output
NN Output

 

Figure 9: Identification simulation 
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Figure 10: Mismatch error 
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3.2 Adaptive Tracking of Nonlinear Dynamic Plants 

The adaptive control of nonlinear dynamic plants is an extremely important area 

of research. It involves the online identification of the plant and development of a 

controller based on this identified plant. The identification part is generally carried 

out using powerful neural networks. A number of techniques have been 

suggested in literature. Here we utilize one of the more recent approaches. The 

main structure is depicted below. The basic structure is that of an IMC (Internal 

Model Control). The identification task is carried out utilizing the Gaussian RBF-

NN. A control law is synthesized which is based on the identified system 

parameters. 

 

 

Figure 11: Adaptive Tracking 

 

3.2.1 The Plant 

We assume a stable nonlinear dynamic plant whose functional parameters or the 

functional structure need not be known. 

3.2.2 The Identifying Model 

We identify the plant online using the radial basis function with the following 

structure: 
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                 (3.1) 1 21( ) ( 1) ( ( 1)) ( ( 2)) ......... ( ( ))nMy t a u t b u t b u t b u t n
∧ ∧ ∧

= − + Φ − + Φ − + + Φ −

 

where the parameter  is selected in advance and the parameters  

are estimated using the normalized least mean square algorithm.  can be any 

function used in neural networks. Here we use the Gaussian radial basis 

function.  

1a nbbb
∧∧∧

,......, 21

Φ

3.2.3 The Control Law 

To simplify the synthesis of the control law we use the equivalent U-model for the 

RBF of equation (3.1): 

 

                                                 0 1( ) ( ) ( ) ( 1)My t t t u tα α= + −                (3.2)                      

where 

1 20 ( ) ( ( 1)) ( ( 2)) ........ ( ( ))nt b u t b u t b u t nα
∧ ∧ ∧

= Φ − + Φ − + + Φ −  
( ) 11 at =α  

 

  

Using the U-model of equation (3.2) which is linear with respect to the control 

term , the controller has the simplified form as follows: )1( −tu

 

                                                       )(
)()(

)1(
1

0

t
ttU

tu
α

α−
=−

     (3.3)                                       

 

This controller is clearly an inverse of the identified plant. 

3.2.4 Simulation Results 

We carried out simulations on the following nonlinear Hammerstein model 
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)2(1.0)1()1(5.0)(

32 tutututx
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+−+=
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The system was modeled according to equation 3.1, and then its equivalent U-

model (equation 3.2) was used to synthesize the control law (equation 3.3). The 

first parameter  was selected as 5, while the number of linear combination 

weights was four ( ). All weights were initialized to 0 and the step size 

was chosen to be 0.1 

1a

1 2 3 4, , &b b b b
∧ ∧ ∧ ∧

 

The results are depicted in figures 12,13 & 14. 
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Figure 12: Tracking simulation 
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Figure 13: Tracking error 
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Figure 14: Control Input 
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