

Neural Network Applications

Term Project: EE550

Submitted to:
Dr. Samir Al-Baiyat

Electrical Engineering Dept. KFUPM

By:
Imran Nadeem & Naveed R. Butt

220504 & 230353

May 28, 2005

Table of Contents

111 Introduction to Neural Networks...4

1.1 Introduction...4

1.2 Neuron & Artificial Neuron ..5

1.3 Adaptation in NN’s..6

1.4 COMMON NEURAL NETWORK ARCHITECTURES.............................7

1.4.1 Single-Layer Feed-forward Networks ..8

1.4.2 Multilayer Feed-Forward Networks..8

1.4.3 Recurrent Networks...10

1.5 Applications of Neural Networks...11

222 LMS and RBF-NN’s ...13

2.1 The Least Mean Square (LMS) Adaptation Algorithm13

2.2 RBF Neural Networks ...15

2.3 DETAILED LEARNING ALGORITHM FOR RBF-NN’s17

2.3.1 Unsupervised learning...17

2.3.2 Supervised Learning..19

2.4 Relative Advantages of RBF-NN’s..19

333 Neural Network Applications..20

3.1 Nonlinear Plant Identification ..20

3.2 Adaptive Tracking of Nonlinear Dynamic Plants...................................22

3.2.1 The Plant ...22

3.2.2 The Identifying Model ..22

3.2.3 The Control Law ..23

3.2.4 Simulation Results...23

Bibliography ..26

 2

Abstract

Neural networks are parameterized nonlinear functions. Their parameters are the

weights and biases of the network. Adjustment of these parameters results in

different shaped nonlinearities. Typically these adjustments are achieved by a

gradient descent approach on an error function that measures the difference

between the output of the neural network and output of the actual system.

Additionally there is no restriction on the unknown function to be linear. In this

way, neural networks provide a logical extension to create nonlinear robust

control schemes where there is no need to assume that the plant is a linear

parameterization of known nonlinear functions.

These features of the Neural Networks make them an important area of

research. We find Neural Networks applications in a variety of areas. They are

used mainly for the purpose of identification and control. This report focuses on

some advanced applications of Neural Networks in the area of nonlinear plant

identification and adaptive control.

 3

111 Introduction to Neural Networks

1.1 Introduction

Work on artificial neural networks commonly referred to as "neural networks"

(NN) has been motivated right from its origin by the recognition that the human

brain computes in an entirely different way then the conventional computer. The

brain is a highly complex, nonlinear and parallel computer (information

processing system). It has the capability to organize its structural constituents,

known as neurons, so as to perform certain computations (e.g. pattern

recognition, perception, and motor control) many times faster than the fastest

digital computer in existence today. Consider for example, human vision, which is

an information-processing task. It is the function of the visual system to provide a

representation of the environment around us and, more important, to supply the

information we need to interact with the environment. To be specific, the brain

routinely accomplish perceptual recognition task (e.g. recognizing a familiar face

embedded in an un-familiar scene) in approximately 100-200 ms, where as tasks

of much lesser complexity may take days on a conventional computer.

How, then, does a human brain do it? At birth, a brain has great structure and the

ability to built-up its own rules through what we usually refer to as "experience".

Indeed, experience is built up over time, with the most dramatic development (i.e.

hard wiring) of the human brain taking place during the first two years from birth:

but the development continues well beyond that stage.

A "developing" neuron is synonymous with a plastic brain: Plasticity permits the

developing nervous system to adapt to its surrounding environment. Just as

plasticity appears to be essential to the functioning of neurons as information-

processing units in the human brain, so it is with neural networks made up of

artificial neurons. In its most general form, a neural network is a machine that is

designed to model the way in which the brain performs a particular task or

function of interest; the network is usually implemented by electronic components

 4

or is simulated in software on a digital computer. The interest is confined to an

important class of neural networks that perform useful computations through a

process of learning. To achieve good performance, neural networks employ a

massive interconnection of simple computing definition of a neural network

viewed as an adaptive machine.

A neural network is a massively equivalent distributed process or made up of

simple processing units, which has a natural propensity for storing experiential

knowledge and making it available for use. It resembles the brain in two respects:

 Knowledge is acquired by the network from its environment through a

learning process.

 Inter neuron connection strengths, known as synaptic weights, are used to

store the acquired knowledge.

1.2 Neuron & Artificial Neuron

The two figures 1 & 2 compare the human neuron and the artificial neuron. For

the human neuron the main functioning parts are:

Figure 1: Human Neuron

 5

 Dendrites: These act as the input points to the main body of the neuron.

 Synapse: This is the storage area of the past experience.

 Soma: It receives synaptic information and performs further processing on

the information.

 Axon: This is the output line for the neuron.

Figure 2: Artificial Neuron

In artificial neural networks, the synaptic and somatic operations are emulated as

follows:

 Synaptic Operation: The input weights act as storage for knowledge (and

therefore, as memory for previous experiences).

 Somatic Operation: The somatic operation is provided by various

mathematical operations such as aggregation, thresholding, nonlinear

activation and dynamic processing to the synaptic inputs.

1.3 Adaptation in NN’s

The procedure that is used to perform the learning process is called a learning

algorithm (fig. 3), the function of which is to modify the synaptic weights of the

network in an orderly fashion to attain a desired design objective.

 6

Figure 3: Adaptation in NN’s

The modification of synaptic weights provides the traditional method for the

design of neural networks. Such an approach is the closest to linear adaptive

filter theory, which is already well established and successfully applied in many

diverse fields. However, it is also possible for a neural network to modify its own

topology, which is motivated by the fact that neurons in the human brain can die

and then new synaptic connections can grow.

1.4 COMMON NEURAL NETWORK ARCHITECTURES

The manner in which the neurons of a neural network are structured is intimately

linked with the learning algorithm used to train the network. We may therefore

speak of algorithms (rules) used in the design of neural networks as being

structured. In general we may identify three fundamentally different classes of

network architectures:

 7

1.4.1 Single-Layer Feed-forward Networks

In a layered neural network the neurons are organized in the form, of layers. In

the simplest form of layered network, we have an input layer of source nodes that

projects onto an output layer of neurons (computation nodes), but not vise versa.

In other words, this network is strictly a feed-forward or acyclic type. It is

illustrated in the figure for the case if four nodes in both the input and output

layers. Such a network is called a single-layered network, with the name "single-

layer" referring to the output layer of computation nodes (neurons). We do not

count the input layer of source nodes because no computation is performed

there.

Figure 4: Single Layer Feedforward NN

1.4.2 Multilayer Feed-Forward Networks

The second class of a feed-forward neural network distinguishes its self by the

presence of one or more hidden layers, whose computation nodes are

correspondingly called hidden neurons or hidden units. The function of the

hidden neuron is to interfere between the external input and the network output in

some useful manner.

Multilayer feed forward networks are an important class of neural networks.

Typically, the network consists of a set of sensory units (source nodes) that

constitute the input layer, one or more hidden layers of computation nodes, and

 8

an out-put layer of computation nodes. The input signal propagates through the

network in a forward direction, on a layer-by-layer basis. These neural networks

are commonly referred to as multilayer perceptrons (MLP’s), which represent a

generalization of the single-layer perceptron.

The source nodes in the input layer of the network supply respective elements of

the activation pattern (input vector), which constitute the input signals applied to

the neurons (computation nodes) in the second layer (i.e., the first hidden layer).

The output signals of the second layer are used as an input to the third layer, and

so on for the rest of the network. Typically the neurons at each layer of the

network have as there inputs the outputs of the preceding layers only. The set of

output signals of the neurons in the output (final layer) constitutes the over all

response of the network to the activation pattern supplied by the source nodes in

the input (first) layer.

Multilayer perceptrons have been applied successfully to solve some difficult and

diverse problems by training them in a supervised manner with a highly popular

algorithm known as the error back-propagation algorithm. This algorithm is based

on the error-correction learning rule. As such, it may be viewed as a

generalization of an equally popular adaptive filtering algorithm: the least-mean-

square (LMS) algorithm.

Basically, error back-propagation learning consists of two passes through the dif-

ferent layers of the network: a forward pass and a backward pass. In the forward

pass, an activity pattern (input vector) is applied to the sensory nodes of the

network, and its effect propagates through the network layer by layer. Finally, a

set of outputs is produced as the actual response of the network. During the

forward pass the synaptic weights of the networks are all fixed. During the

backward pass, on the other hand, the synaptic weights are all adjusted in

accordance with an error-correction rule. Specifically, the actual response of the

network is subtracted from a desired (target) response to produce an error signal.

This error signal is then propagated backward through the network, against the

 9

direction of synaptic connections, hence the name "error back-propagation." The

synaptic weights are adjusted to make the actual response of the network move

closer to the desired response in a statistical sense. The error back-propagation

algorithm is also referred to in the literature as the back-propagation algorithm.

Figure 5 shows the architectural graph of a multilayer perceptron with two hidden

layers and an output layer. Signal flow through the network progresses in a

forward direction, from left to right and on a layer-by-layer basis.

Figure 5: Multi-layer Feedforward NN’s

The neural network in the figure is said to be fully connected in the sense that

every node in each layer of the network is connected to every other node in the

adjacent forward layer. If, however, some of the communication links are missing

from the network, we say that the network is partially connected.

1.4.3 Recurrent Networks

A recurrent neural network distinguishes itself from the feed-forward network in

that it has at least one feedback loop. For example, a recurrent network may

consist of a single layer of neurons with each neuron feeding its output signal

back to the input of all input neurons.

The presence of feedback loops has a profound impact on the learning capability

of the network and on its performance. Moreover, the feedback loops involve the

 10

use of particular branches composed of unit-delay elements which result in a

nonlinear dynamical behavior, assuming that the neural network contains

nonlinear units.

1.5 Applications of Neural Networks

Neural networks are applicable in virtually every situation in which a relationship

between the predictor variables (independents, inputs) and predicted variables

(dependents, outputs) exists, even when that relationship is very complex and

not easy to articulate in the usual terms of "correlations" or "differences between

groups." A few representative examples of problems to which neural network

analysis has been applied successfully are:

 Detection of medical phenomena. A variety of health-related indices

(e.g., a combination of heart rate, levels of various substances in the

blood, respiration rate) can be monitored. The onset of a particular

medical condition could be associated with a very complex (e.g., nonlinear

and interactive) combination of changes on a subset of the variables being

monitored. Neural networks have been used to recognize this predictive

pattern so that the appropriate treatment can be prescribed.

 Stock market prediction. Fluctuations of stock prices and stock indices

are another example of a complex, multidimensional, but in some

circumstances at least partially-deterministic phenomenon. Neural

networks are being used by many technical analysts to make predictions

about stock prices based upon a large number of factors such as past

performance of other stocks and various economic indicators.

 Credit assignment. A variety of pieces of information are usually known

about an applicant for a loan. For instance, the applicant's age, education,

occupation, and many other facts may be available. After training a neural

network on historical data, neural network analysis can identify the most

 11

relevant characteristics and use those to classify applicants as good or

bad credit risks.

 Condition Monitoring. Neural networks can be instrumental in cutting

costs by bringing additional expertise to scheduling the preventive

maintenance of machines. A neural network can be trained to distinguish

between the sounds a machine makes when it is running normally ("false

alarms") versus when it is on the verge of a problem. After this training

period, the expertise of the network can be used to warn a technician of

an upcoming breakdown, before it occurs and causes costly unforeseen

"downtime."

 Engine management. Neural networks have been used to analyze the

input of sensors from an engine. The neural network controls the various

parameters within which the engine functions, in order to achieve a

particular goal, such as minimizing fuel consumption.

 Signature analysis, as a mechanism for comparing signatures made

(e.g. in a bank) with those stored. This is one of the first large-scale

applications of neural networks in the USA, and is also one of the first to

use a neural network chip.

 Process control, most processes cannot be determined as computable

algorithms. Neural Networks can be used to adaptively control the process

 Nonlinear Identification & Adaptive Control, This is one of the main

areas of application of the neural networks. Neural Networks find

applications in situations where the plant dynamics are uncertain or un-

modeled.

 12

222 LMS and RBF-NN’s

2.1 The Least Mean Square (LMS) Adaptation Algorithm

As discussed in section 1, the learning process in the neurons involves updating

of certain “weights”. A number of adaptation algorithms are available in literature.

The criteria/cost functions used for adaptation and the methods are usually

derived from the richly developed field of adaptive filter theory. In the following

we present one of the most commonly used adaptation algorithms, the LMS.

Let:

][nw : time varying neuron tap weights

][nv : input to neuron

][nd : desired response

[]ns~ : actual output of neuron

J : cost function (the mean square error)

The estimation error is the difference between the desired response and the

estimated output:

][~][][nsndne −=

using][][~ nvwns H= gives,

][][][nvwndne H−=

The mean square error (cost function) is defined as:

{ } { }22][][][nvwndEneEJ H−==

 13

Thus the cost function J is a function of vector w. Minimizing J with respect to the

complex tap weights w leads to the set of equations called the Wiener-Hopf

equations. If we limit the number of taps to M then we obtain the matrix

formulation of the Wiener- Hopf equations from which the solution is obtained as

pRwo
1−=

where

{ }][][nvnvER H= and { }][][* ndnvEp =

This method of solution requires inversion of a matrix. An alternative adaptive

method of solution is the Steepest Descent algorithm. It can be shown that the

cost function J has the shape of an M-dimensional bowl whose minimum is at the

optimal solution of w. The steepest descent algorithm moves the tap weights

towards the minimum of the J bowl at every iteration by moving them in the

direction opposite to the gradient vector:

pRwJw 22 −=∇

Thus we have an iterative definition for the tap weight updates:

Jnwnw w∇−=+
2

][]1[µ

]][[][nRwpnw −+= µ

µ is known as the adaptation step. (µ > 0)

In practice, although we do not know R and p, we can use their instantaneous

estimates:

 14

][][][ˆ nvnvnR H=
][][ˆ * ndnvp =

This approach is known as the Least Mean Squares (LMS) method which is a

member of a particular class of algorithms called the stochastic gradient

algorithms. Thus the adaptation equation is given as:

][][][ˆ]1[ˆ * nenvnwnw µ+=+
As we shall see, this equation is used in a variety of adaptation algorithms each

having its own definition for the error functions.

2.2 RBF Neural Networks

Among the vast variety of neural networks, the RBF-NN is a quire commonly

used structure. The design of a RBF-NN in its most basic form consists of three

separate layers. The input layer is the set of source nodes (sensory units). The

second layer is a hidden layer of high dimension. The output layer gives the

response of the network to the activation patterns applied to the input layer. The

transformation from the input space to the hidden-unit space is nonlinear. On the

other hand, the transformation from the hidden space to the output space is

linear.

Figure 6: RBF-NN Basic Structure

 15

With reference to the figure above, the output y(t) is a weighted sum of the

outputs of the hidden layer, given by

1

ˆ () (()),
n

i i
i

y t w u t cφ
=

= −∑
 (3.3)

where

()u t is the input

().φ is an arbitrary nonlinear radial basis function

. denotes the norm that is usually assumed to be Euclidean

ic are the known centers of the radial basis functions

iw are the weights

Radial functions are a special class of functions. Their characteristic feature is

that their response decreases (or increases) monotonically with distance from a

central point and they are radially symmetric. The centre, the distance scale, and

the precise shape of the radial function are parameters of the model. There are a

variety of radial functions available in literature. The most commonly used one is

the Gaussian radial filter, which in case of a scalar input is

2

2

()() exp()x ch x
β
−

= −

Its parameters are its centre c and its radius β (width), Figure 1.3 illustrates a

Gaussian RBF with centre c = 0 and radius β = 1. A Gaussian RBF

monotonically decreases with distance from the centre

 16

Figure 7: Gaussian function Profile

A summary of the characteristics of the RBF-NN’s is given below

 They are two-layer feed-forward networks.

 The hidden nodes implement a set of radial basis functions (e.g. Gaussian

functions).

 The output nodes implement linear summation functions as in an MLP.

 The network training is divided into two stages: first the weights from the

input to hidden layer are determined, and then the weights from the

hidden to output layer.

 The training/learning is very fast.

 The networks are very good at interpolation.

2.3 DETAILED LEARNING ALGORITHM FOR RBF-NN’s

The whole algorithm of RBF network learning may be split into two phases:

 Hidden layer learning or basis function selection (unsupervised learning).

 Fitting of outputs in a transformed feature space (supervised learning).

2.3.1 Unsupervised learning

The first phase is an unsupervised learning. It does not use any information on

target outputs and deals only with a set of inputs. At this stage we have to:

 17

1. Select a number of radial basis functions.

2. Select a center for each basis function and

3. Select a value for the parameter β (width), which characterizes the basis

function range of definition (the range of its influence). A too large value of β

forms too narrow basis functions.

In step1, usually all the RBF’s are chosen to be the same. There are many

algorithms available for the selection of the centers (step-2), one of the more

popular ones is the K-means clustering algorithm which goes as follows

Given m data points, select l as the number of clusters such that l < m

Take the first l learning data as the center vectors for the l clusters

, 1, 2,...., ;j jc x j l= =
Assign the remaining data points to one of the clusters with the least distance

criterion. Recompute the center vectors using the new mean, that is

1 ; 1
j

j j
i cj

c x
m ∈

j l= ≤ ≤∑

where mj is the number of data points belonging to the jth cluster.

As soon as the clustering algorithm is complete we may move to the selection of

the variance or width parameter β (step-3). These parameters control the

amount of overlap of the radial basis functions as well as the network

generalizations. A small value yields a rapidly decreasing function, whereas a

large value results in a more gently varying function. The mostly commonly used

method for the selection of the width parameter for a cluster is to take it equal to

the average distance between the data in the cluster and center of the cluster.

 18

2.3.2 Supervised Learning

The second phase is a supervised learning. The goal is to fit outputs with a linear

function of nonlinear transformed inputs. Any gradient optimization method may

be used, but the LMS (discussed above) is used most often.

2.4 Relative Advantages of RBF-NN’s

 Many pattern recognition experiments show that the RBF-NN’s are

superior over other neural network approaches in the following senses.

 RBF-NN’s are capable of approximating nonlinear mappings effectively.

 The training time of the RBF-NN’s is quite low compared to that of other

neural network approaches such as the multi-layer perceptron.

 The RBF-NN’s produce classification accuracies from 5% to 10% higher

than accuracies produced by the back propagation algorithm.

 The RBF-NN’s are quite successful for identifying regions of sample data

not in any known class because they use a non-monotonic transfer

function based on the Gaussian density function.

 19

333 Neural Network Applications

3.1 Nonlinear Plant Identification

One of the major areas of application of the neural networks is in the

identification of nonlinear plants. The RBF-NN was introduced in section 2. Here

we make use of the Gaussian RBF-NN to identify the nonlinear system known as

the continuous stirred tank reactor. The nonlinear model of the continuous stirred

tank reactor when the sampling time is chosen as 0.05 seconds is as follows.

2 3 4

2 3 2

2 2 2 3

(1) 0.8606 () 0.0401 () 0.0017 () 0.000125 () 0.0464 ()
0.045 () () 0.0034 () () 0.00025 () () 0.0012 ()

0.0013 () () 0.0001458 () () 0.00002083 () 0.00002083 () ()

y t y t y t y t y t u t
y t u t y t u t y t u t u t
y t u t y t u t u t y t u t

+ = − + − +

− + − − +

− + − 3

Figure 8: Identification Structure

The RBF-NN assumes no prior knowledge of the system parameters and tries to

identify the system online. Simulations were carried out using SIMULINK. The

number of linear combiner weights was chosen to be ten. The neural network

worked well and was able to identify the nonlinear plant online. The simulation

results are given in the figures 9 & 10.

 20

0 20 40 60 80 100 120 140 160 180 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time

Plant Output
NN Output

Figure 9: Identification simulation

0 20 40 60 80 100 120 140 160 180 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

Error

Figure 10: Mismatch error

 21

3.2 Adaptive Tracking of Nonlinear Dynamic Plants

The adaptive control of nonlinear dynamic plants is an extremely important area

of research. It involves the online identification of the plant and development of a

controller based on this identified plant. The identification part is generally carried

out using powerful neural networks. A number of techniques have been

suggested in literature. Here we utilize one of the more recent approaches. The

main structure is depicted below. The basic structure is that of an IMC (Internal

Model Control). The identification task is carried out utilizing the Gaussian RBF-

NN. A control law is synthesized which is based on the identified system

parameters.

Figure 11: Adaptive Tracking

3.2.1 The Plant

We assume a stable nonlinear dynamic plant whose functional parameters or the

functional structure need not be known.

3.2.2 The Identifying Model

We identify the plant online using the radial basis function with the following

structure:

 22

 (3.1) 1 21() (1) ((1)) ((2)) (())nMy t a u t b u t b u t b u t n
∧ ∧ ∧

= − + Φ − + Φ − + + Φ −

where the parameter is selected in advance and the parameters

are estimated using the normalized least mean square algorithm. can be any

function used in neural networks. Here we use the Gaussian radial basis

function.

1a nbbb
∧∧∧

,......, 21

Φ

3.2.3 The Control Law

To simplify the synthesis of the control law we use the equivalent U-model for the

RBF of equation (3.1):

 0 1() () () (1)My t t t u tα α= + − (3.2)

where

1 20 () ((1)) ((2)) (())nt b u t b u t b u t nα
∧ ∧ ∧

= Φ − + Φ − + + Φ −
() 11 at =α

Using the U-model of equation (3.2) which is linear with respect to the control

term , the controller has the simplified form as follows:)1(−tu

)(
)()(

)1(
1

0

t
ttU

tu
α

α−
=−

 (3.3)

This controller is clearly an inverse of the identified plant.

3.2.4 Simulation Results

We carried out simulations on the following nonlinear Hammerstein model

 23

)(2.0)()(1)(
)2(1.0)1()1(5.0)(

32 tutututx
txtxtyty

+−+=

−+−+−=

The system was modeled according to equation 3.1, and then its equivalent U-

model (equation 3.2) was used to synthesize the control law (equation 3.3). The

first parameter was selected as 5, while the number of linear combination

weights was four (). All weights were initialized to 0 and the step size

was chosen to be 0.1

1a

1 2 3 4, , &b b b b
∧ ∧ ∧ ∧

The results are depicted in figures 12,13 & 14.

0 10 20 30 40 50 60 70 80 90 100
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time

Reference
Plant Output
Model Output

Figure 12: Tracking simulation

 24

0 10 20 30 40 50 60 70 80 90 100

-1

0

1

2

3

4

Time

Er
ro

r

Figure 13: Tracking error

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

Co
nt

ro
l S

ig
na

l

Figure 14: Control Input

 25

Bibliography

The following sources were consulted in the making of this report

 Gupta, M. M., Jin, L. and Homma, N., “Static and dynamic Neural

Networks”, IEEE Press, 2003.

 Shafiq M. and Riyaz S.H., “Internal Model Control Structure Using

Adaptive Inverse Control Strategy.”, The 4th Int. Conf. on Control and

Automation (ICCA), pp.59-59, 2003.

 Spooner, J. T. , Maggiore, M. , Ordonez, R. and Passino, K. M., “Stable

adaptive control and estimation for nonlinear systems”, Wiley-Interscience,

NY , 2002.

 Zhu, Q. M. and Guo. L. Z., “A pole placement controller for nonlinear

dynamic plants”, J. Systems and Control Engineering, Vol. 216 (part I), pp.

467 – 476 , 2002.

 26

	Introduction to Neural Networks
	Introduction
	Neuron & Artificial Neuron
	Adaptation in NN’s
	COMMON NEURAL NETWORK ARCHITECTURES
	Single-Layer Feed-forward Networks
	Multilayer Feed-Forward Networks
	Recurrent Networks

	Applications of Neural Networks

	LMS and RBF-NN’s
	The Least Mean Square (LMS) Adaptation Algorithm
	RBF Neural Networks
	DETAILED LEARNING ALGORITHM FOR RBF-NN’s
	Unsupervised learning
	Supervised Learning

	Relative Advantages of RBF-NN’s

	Neural Network Applications
	Nonlinear Plant Identification
	Adaptive Tracking of Nonlinear Dynamic Plants
	The Plant
	The Identifying Model
	The Control Law
	Simulation Results

	Bibliography

