

INTERNAL MODEL CONTROL OF LINEAR AND NON-LINEAR SYSTEMS
USING NEURAL NETWORKS

M. Saqib Sohail (260260) Ahmed A. Quadeer (260268)

Electrical Engineering Dept., King Fahd University of Petroleum & Minerals (KFUPM)

ABSTRACT

This paper deals with the Internal model control of linear
and non-linear systems using Feed-forward Neural
network. Control is achieved by estimating the plant and
then finding its inverse model using neural network. The
back propagation algorithm is used to train the neural
networks. Simulation results have been shown for linear
minimum phase, linear non-minimum phase and non-
linear systems.

Index Terms— Internal Model Control, Feed-
forward Neural Network, Back Propagation algorithm.

1. INTRODUCTION

The problem of controlling a plant consequently a very
large variety of control techniques are available in the
literature for modeling of linear and non linear plants.
These include adaptive modeling techniques for linear
plant modeling, adaptive inverse modeling, internal
model control and non-linear Auto Regressive Moving
Average (ARMA) models.
 In recent years, neural Networks based techniques
have also been explored. Neural Network based
approaches are attractive as neural networks have an
inherent ability to approximate nonlinear functions and so
prove useful to model non linear plants. Internal Model
Control (IMC) structure models the plant in parallel with
the model of the plant with a controller placed at their
input. If the model is exact, there will be no feedback to
the controller. For inexact plant models and in the
presence of disturbance, the input to the controller is the
difference of the set point and the feedback signal. Here
we have used two Feed Forward Neural Networks
(FFNN), one to model the plant and one as controller.
The back propagation algorithm is used to determine the
parameters of the models.
 In this paper we have compared the performance of
IMC using neural networks for linear minimum phase,
linear non-minimum phase and non-linear systems.
 The outline of this paper is as follows. Section 2
describes the Internal model control strategy. Section 3
briefly explains the Feed-forward Neural network
implemented in this paper. System model is described in
Section 3. Simulation results are discussed in Section 4
and the conclusions are summed up in Section 5.

2. INTERNAL MODEL CONTROL

The Internal Model Control (IMC) philosophy relies on
the Internal Model Principle, which states that control can
be achieved only if the control system encapsulates,
either implicitly or explicitly, some representation of the
process to be controlled. In particular, if the control
scheme has been developed based on an exact model of
the process, then perfect control is theoretically possible.
Consider, for example, the system shown in the figure
below:

 Figure 1. Open Loop Control Strategy

 A controller, Gୡሺsሻ.,is used to control the process,
G୮ሺsሻ. Suppose G୮෪ሺsሻ is a model of G୮ሺsሻ. By setting
Gୡሺsሻ to be the inverse of the model of the process,

ሻݏ௖ሺܩ ൌ ሻିଵ (1)ݏ௣෪ሺܩ

 and if G୮ሺsሻ ൌ G୮෪ሺsሻ, (the model is an exact
representation of the process).
 Then it is clear that the output will always be equal
to the setpoint. Notice that this ideal control performance
is achieved without feedback. What this tells us is that if
we have complete knowledge about the process (as
encapsulated in the process model) being controlled, we
can achieve perfect control. It also tells us that feedback
control is necessary only when knowledge about the
process is inaccurate or incomplete.
 In practice, however, process-model mismatch is
common; the process model may not be invertible and the
system is often affected by unknown disturbances. Thus
the above open loop control arrangement will not be able
to maintain output at setpoint. Nevertheless, it forms the
basis for the development of a control strategy that has
the potential to achieve perfect control. This strategy,
known as Internal Model Control (IMC), has the general
structure depicted in Figure 2.
 In the Figure 2, d(s) is an unknown disturbance
affecting the system. The manipulated input U(s) is
introduced to both the process and its model. The process

Figure 2. IMC Scheme

output, Y(s), is compared with the output of the model,
resulting in a signal መ݀ሺݏሻ.That is,

 መ݀ሺݏሻ ൌ ሻݏ௣ሺܩൣ െ ሻݏሻ൧ܷሺݏ௣෪ሺܩ ൅ ݀ሺݏሻ (2)

 If ݀ሺݏሻ is zero for example, then መ݀ሺݏሻ is a measure
of the difference in behavior between the process and its
model. If ܩ௣ሺݏሻ ൌ ሻ is equal to theݏሻ, then መ݀ሺݏ௣෪ሺܩ
unknown disturbance. Thus መ݀ሺݏሻ may be regarded as the
information that is missing in the model, ܩ௣ሺݏሻ and can
therefore be used to improve control. This is done by
subtracting መ݀ሺݏሻ from the set point R(s), which is very
similar to affecting a set point trim. The resulting control
signal is given by,

ܷሺݏሻ ൌ ൣܴሺݏሻ െ መ݀ሺݏሻ൧ܩ௖ሺݏሻ
 ൌ ൛ܴሺݏሻ െ ሻݏ௣ሺܩൣ െ ሻݏሻ൧ܷሺݏ௣෪ሺܩ െ ݀ሺݏሻൟܩ௖ሺݏሻ (3)

 Thus,

 ܷሺݏሻ ൌ
ሾܴሺݏሻ െ ݀ሺݏሻሿܩ௖ሺݏሻ

1 ൅ ሻݏ௣ሺܩൣ െ ሻݏ௖ሺܩሻ൧ݏ௣෪ሺܩ
 ሺ4ሻ

 Since

 ܻሺݏሻ ൌ ሻݏሻܷሺݏ௣ሺܩ ൅ ݀ሺݏሻ (5)

 The closed loop transfer function for the IMC
scheme is therefore

 ܻሺݏሻ ൌ
ሾܴሺݏሻ െ ݀ሺݏሻሿܩ௖ሺݏሻܩ௣ሺݏሻ
1 ൅ ሻݏ௣ሺܩൣ െ ሻݏ௖ሺܩሻ൧ݏ௣෪ሺܩ

൅ ݀ሺݏሻ ሺ6ሻ

 Or

 ܻሺݏሻ ൌ
ሻݏሻܴሺݏ௣ሺܩሻݏ௖ሺܩ ൅ ൣ1 െ ሻݏሻ൧݀ሺݏ௣෪ሺܩሻݏ௖ሺܩ

1 ൅ ሻݏ௣ሺܩൣ െ ሻݏ௖ሺܩሻ൧ݏ௣෪ሺܩ
 ሺ7ሻ

 From this closed loop expression, we can see that if
ሻݏ௖ሺܩ ൌ ሻݏ௣ሺܩ ሻିଵ, and ifݏ௣෪ሺܩ ൌ ሻ, then perfectݏ௣෪ሺܩ
setpoit tracking and disturbance rejection is achieved.
Notice that theoretically even if ܩ௣ሺݏሻ ് ሻ , prefectݏ௣෪ሺܩ
disturbance rejection can still be realized provided
ሻݏ௖ሺܩ ൌ .ሻିଵݏ௣෪ሺܩ

 Additionally, to improve robustness, the effects of
process model mismatch should be minimised. Since
discrepancies between process and model behaviour
usually occur at the high frequency end of the system's
frequency response, a low-pass filter G୤ሺsሻ is usually
added to attenuate the effects of process-model mismatch.
Thus, the internal model controller is usually designed as
the inverse of the process model in series with a low-pass
filter, i.e. GIMCሺsሻ ൌ GୡሺsሻG୤ሺsሻ. The order of the filter is
usually chosen such that GୡሺsሻG୤ሺsሻ is proper, to prevent
excessive differential control action. The resulting closed
loop then becomes

ܻሺݏሻ ൌ
ሻݏሻܴሺݏ௣ሺܩሻݏூெ஼ሺܩ ൅ ൣ1 െ ሻݏሻ൧݀ሺݏ௣෪ሺܩሻݏூெ஼ሺܩ

1 ൅ ሻݏ௣ሺܩൣ െ ሻݏூெ஼ሺܩሻ൧ݏ௣෪ሺܩ

 (8)

 Designing an internal model controller is relatively
easy. Given a model of the process, G୮෪ሺsሻ, first factor
G୮෪ሺsሻ into invertible and non-invertible components.

ሻݏ௣෪ሺܩ ൌ ௣෪ିܩሻݏ௣ା෪ሺܩ ሺݏሻ (9)

 The non-invertible component G୮෪ି ሺsሻ, contains
terms which if inverted, will lead to instability and
realisability problems, e.g. terms containing positive
zeros and time-delays.
 Next, set Gୡሺsሻ ൌ G୮ା෪ሺsሻିଵ and then GIMCሺsሻ ൌ
GୡሺsሻG୤ሺsሻ, where G୤ሺsሻ is a low pass function of
appropriate order.

3. NEURAL NETWORKS

The manner in which the neurons of a neural network are
structured is intimately linked with the learning algorithm
used to train the network. We may therefore speak of the
learning algorithm used in the design of the neural
networks as being structured. In general, there are two
different classes of network architectures:

3.1. Single Layer Feed-forward Network

In layered neural networks, the neurons are organized in
the form of layers. In the simplest form of a layered
network, we have an input layer of source nodes that
projects onto an output layer of neurons, but not vice
versa. In other words, the network is strictly a
feedforward network, as shown in Figure 3. Such a
network is known as a single layer network.

3.2. Multilayer Feed-forward Network

The second class of feedforward neural network
distinguishes itself by the presence of one or more hidden
layers whose computation nodes are correspondingly
called hidden neurons. The function of the hidden
neurons is to intervene between the external inputs and
the network output in some useful manner. By adding one

or more hidden layer, the network is enabled to extract
higher order statistics.

Figure 3. Single layer Feed-forward neural network

 The source nodes in the input layer of the neural
network supply respective elements of the activation
pattern (input vector), which constitute the input signals
applied to the neurons (computable nodes) in the second
layer (i.e., the first hidden layer). The output signals of
the second layer are used as the inputs to the third layer,
and so on for the rest of the network. Typically the
neurons in each layer of the network have as their inputs
the output signals of the preceding layer only. The set of
output signals of the neurons in the output (final) layer of
the network constitutes the overall response of the
network to the activation pattern supplied by the source
nodes in the input (first) layer. The architectural graph in
Figure 4 shows the connection in a multilayer
feedforward neural network. A multilayer neural network
with m source nodes, h hidden nodes and q neurons in the
output layer is known as an m-h-q network.

Figure 4. Multi-layer feed-forward neural network

3.3. Back propagation Algorithm

The error signal at the output of neuron j at iteration n is
defined by

 ௝݁ሺ݊ሻ ൌ ௝݀ሺ݊ሻ െ ௝ሺ݊ሻ (10)ݕ

 where ௝݁ሺ݊ሻ refers to the error signal at the output
of neuron ݆, ௝݀ሺ݊ሻ is the desired response and ݕ௝ሺ݊ሻ is the
function signal appearing at the output of the ݆݄ݐ neuron.
We define the instantaneous value of the error energy for
neuron j as ଵ

ଶ ௝݁
ଶሺ݊ሻ. Correspondingly, the instantaneous

value ߦሺ݊ሻ of the total error energy is obtained by
summing ଵ

ଶ ௝݁
ଶሺ݊ሻ over all neurons in the output layer;

these are the only visible neurons for which error signals
can be calculated directly. We may thus write

ሺ݊ሻߦ ൌ
1
2෍ ௝݁

ଶ

௝ୀ஼

ሺ݊ሻ ሺ11ሻ

 where the set ܥ includes all the neurons in the output
layer of the network. Let ܰ denote the total number of
patterns contained in the training set. The averaged
squared error energy is obtained by summing ߦሺ݊ሻ over
all ݊ and then normalizing with respect to the set size
 ܰ, as shown by

௔௩ߦ ൌ
1
ܰ
෍ߦ
ே

௡ୀଵ

ሺ݊ሻ ሺ12ሻ

 The instantaneous error energy ߦሺ݊ሻ and the average
error energy ߦ௔௩ , is a function of all the free parameters
of the network. For a given set of training set,
 ௔௩ represents the cost function as a measure of learningߦ
performance. The objective of the learning process is to
adjust the free parameters of the network to
minimize ߦ௔௩.
 The sequential updating of weights is preferred
method for on-line implementation of the back
propagation algorithm, \for this mode of operation, the
algorithm cycles through the training sample
ሼሺݔሺ݊ሻ, ݀ሺ݊ሻሻሽ௡ୀଵே as follows:

3.3.1. Initialization: Assuming that no prior
information is available, pick the synaptic weighted and
thresholds from a uniform distribution whose mean is
zero and whose variance is chosen to make the standard
deviation of the induced local fields of the neurons lie at
the transition between the linear and saturation parts of
the sigmoid activation function.

3.3.2. Forward Computation: Let a training example
in the epoch be denoted by ሺݔሺ݊ሻ, ݀ሺ݊ሻሻ, with the input
vector ݔሺ݊ሻ applied to the input layer of sensory nodes
and he desired response vector ݀ሺ݊ሻ presented to the
output layer of computation nodes. Compute the induced
local fields and function signals of the network by
preceeding forward through the network, layer by layer.
The induced local field ݒ௝

ሺ௟ሻሺ݊ሻ for neuron ݆ in layer ݈ is

௝ݒ
ሺ௟ሻ ൌ ෍ݓ௝௜

ሺ௟ሻሺ݊ሻݕ௜
ሺ௟ିଵሻሺ݊ሻ

௠బ

௜ୀ଴

 ሺ13ሻ

 where y୧
ሺ୪ିଵሻሺnሻ the output is signal of neuron i in

the previous layer l െ 1 at iteration n and w୨୧
ሺ୪ሻሺnሻ is the

synaptic weight of neuron j in the layer l that is fed from
neuron i in layer l െ 1. For i ൌ 0, we have y଴

ሺ୪ିଵሻሺnሻ ൌ
൅1 and w଴

ሺ୪ሻሺnሻ ൌ b୨
ሺ୪ሻሺnሻ is the boas applied to neuron

j in layer l. For a sigmoid function, the output signal of
neuron j in layer l is

௝ݕ

ሺ௟ሻ ൌ ߮௝ ቀݒ௝ሺ݊ሻቁ ሺ14ሻ

 where φ୨ሺ. ሻ denots the activation function
describing the input-output functional relationship of the
nonlinearity associated with neuron j. If neuron j is in the
first hidden layer (i.e., l ൌ 1), set

௝ݕ

ሺ଴ሻሺ݊ሻ ൌ ௝ሺ݊ሻ ሺ15ሻݔ

 where x୨ሺnሻ is the jth element of the input
vector xሺnሻ. If neuron j is in the output layer (i.e., l ൌ L,
where L is reffered to as the depth of the network), set

௝ݕ

ሺ௅ሻሺ݊ሻ ൌ ௝ሺ݊ሻ (16)݋

 Compute the error signal as

 ௝݁ሺ݊ሻ ൌ ௝݀ሺ݊ሻ െ ௝ሺ݊ሻ (17)݋

 where d୨ሺnሻ is the jth element of the desired
response vector dሺnሻ.

3.3.3. Backward Computation: Compute the δs (i.e.,
local gradients) of the network, defined by

௝ߜ
ሺ௟ሻ ൌ

ە
ۖ
۔

ۖ
ۓ ௝݁

ሺ௅ሻሺ݊ሻ߮௝ᇱ ቀݒ௝
ሺ௅ሻሺ݊ሻቁ

ܮ ݎ݁ݕ݈ܽ ݐݑ݌ݐݑ݋ ݊݅ ݆ ݊݋ݎݑ݁݊ ݎ݋݂

߮௝ᇱ ቀݒ௝
ሺ௟ሻሺ݊ሻቁ෍ߜ௞

ሺ௟ାଵሻሺ݊ሻݓ௞௝
ሺ௟ାଵሻሺ݊ሻ

௞

݈ ݎ݁ݕ݈ܽ ݄݊݁݀݀݅ ݊݅ ݆ ݊݋ݎݑ݁݊ ݎ݋݂

 (18)

 where the prime in ߮௝ᇱሺ. ሻ denotes differentiation
with respect to the argument. Adjust the synaptic weights
of the network layer ݈ according to the generalized delta
rule:

௝௜ݓ
ሺ௟ሻሺ݊ ൅ 1ሻ ൌ ௝௜ݓ

ሺ௟ሻ ൅ ௝௜ݓሾߙ
ሺ௟ሻሺ݊ െ 1ሻሿ ൅ ௝ߜߟ

ሺ௟ሻሺ݊ሻݕ௝
ሺ௟ିଵሻ

 (19)

 where ߟ is the learning rate parameter and ߙ is the
momentum constant.

3.3.4. Iteration: Iterate the forward and backward
computations under points 2 and 3 by presenting new
epochs of training examples to the network until the
stopping criterion is met.

4. SYSTEM MODEL

4.1 Plant Model using Feed-Forward Neural Network

Figure 5. Training of the Feed Forward Neural Network

We consider single input single output systems which are
described by the following discrete time equation:

ሺ݇ሻݕ ൌ ሾݕሺ݇ െ 1ሻ … ሺ݇ݕ െ ݊ሻ ݑሺ݇ െ 1ሻ… ሺ݇ݑ െ ݉ሻሿ

 (20)

 where ݕሺ݇ሻ and ݑሺ݇ሻ represent, respectively, the
output and the input of the system, ݊ and ݉ are the
orders of ݕሺ݇ሻ and ݑሺ݇ሻ respectively. Using available
inputs and outputs a feedforward Neural Network
(FFNN) can be trained to approximate it. The structure of
the FFNN, considered in this work, is shown in Figure 5.
The FFNN is formed by one hidden layer with ݊ଵ
neurons. The neural model output is given by the
following relations

௠ሺ݇ሻݕ ൌ ݂ ቀܾଶ ൅ ∑ ቀݓଶ௝. ߮௝ሺ݇ሻቁ

௡೗
௝ୀଵ ቁ (21)

 ߮௝ሺ݇ሻ ൌ ݂ሺݏ௝ሺ݇ሻሻ (22)

௝ሺ݇ሻݏ ൌ ܾଵ ൅ ∑ ሺݓଵ௜. ௜ሺ݇ሻሻݔ

௡భ
௜ୀଵ (23)

 where ݔ௜ሺ݇ሻ is the ݄݅ݐ input to the FFNN, ݏ௝ሺ݇ሻ is
the sum of inputs to the ݆݄ݐ neuron, ߮௝ሺ݇ሻ is the output
of the ݆݄ݐ neuron, and ݕ௠ሺ݇ሻ is the estimated networks
output. Here ݂ሺ. ሻ is a derivable and continues function
e.g. the log sigmoid function, ݓଵ௜ and ܾଵ, are
respectively, the hidden layer’s weights and biases. ݓଶ௝
and ܾଶ are, respectively, the output layers weights and
bias. The input vector is given by:

ሺ݇ሻݔ ൌ ሾݕሺ݇ െ 1ሻ… ሺ݇ݕ െ ݊ሻ ݑሺ݇ െ 1ሻ…ݑሺ݇ െ݉ሻሿ்

 (24)

 The parameters of the (FFNN) Model are estimated
by using the back propagation algorithm. The criterion to
be minimised is given by:

ଵܬ ൌ

ଵ
ଶ
∑ ሺݕሺ݇ሻ െ ௠ሺ݇ሻሻଶݕ
ேమ
௞ୀଵ (25)

 where ଶܰ is the number of input output data.

4.2 Inverse Plant Model using Neural Network

The Inverse Neural Network Model (INNM) is
determined as described in Figure 6. The criterion to be
minimized is given by:

ଶܬ ൌ

ଵ
ଶ
∑ ሺݎሺ݇ ൅ 1ሻ െ ௠ሺ݇ݕ ൅ 1ሻሻଶேయ
௞ୀଵ (26)

 where ଷܰ is the number of set point and output data.

 The FFNN for the INN is the same as that used for
the plant model. The performance index ܬଶ is minimized
until the control sequence which leads to the minimum of
 .ଶ is foundܬ

Figure 6. Training of the Inverse Neural Network

5. SIMULATION

In this paper, linear SISO plants, with both minimum
phase and non-minimum phase, and Non-linear transfer
functions are used. To find direct and inverse model of
the plant, we have used the feed forward neural network
with back propagation algorithm. The neural network
used has two layers, five neurons in the first layer while
one at the output.

Example 1: Linear SISO Minimum Phase Plant

Let us consider the following linear SISO minimum
phase plant:

ሻݖሺܪ ൌ
ଵሺ0.1065ିݖ ൅ ଵሻିݖ0.0902
ሺ1 െ ଵିݖ ൅ ଶሻିݖ0.25 ሺ20ሻ

 Plant disturbance used is having normal distribution
with variance 0.01 and a square wave is used as
command input. Figure 7 shows that the plant output
quickly converges to the desired output. The error
between the plant output and the desired output i.e.
݁ሺݐሻ ൌ ሻݐሺݕ െ ሻ is shown in Figure 8 which isݐሺݎ

significantly small. Control input to the plant is bounded
and is depicted in Figure 9.

Example 2: Linear SISO Non-minimum Phase Plant

Following linear SISO non-minimum phase plant is used
in second example:

ሻݖሺܪ ൌ
ଵሺ1ିݖ ൅ ଵሻିݖ2

ሺ1 െ ଵିݖ ൅ ଶሻ ሺ21ሻିݖ0.25

 Plant disturbance is kept same as in the previous
example. Convergence of plant output is shown in Figure
10 which is quite good. The error between the plant
output and the desired output, i.e. ݁ሺݐሻ ൌ ሻݐሺݕ െ ሻ isݐሺݎ
shown in Figure 11 which is little bit larger than the
minimum phase example. The control input is shown in
Figure 12. It can be observed that the control input is
bounded even in case of non-minimum phase plant.

Example 3: Non-linear SISO Plant

Consider the following SISO non-linear plant given by
the following input output relation:

ሺ݊ሻݕ ൌ ሺ݊ሻݔ ൅ ݁ି௔௕௦൫௫ሺ௡ሻ൯ (22)

 Plant disturbance is kept same as in the previous
examples. Convergence of plant output is shown in
Figure 13 where it can be seen that the plant output
quickly follows the desired output. The error between the
plant output and the desired output is shown in Figure 14.
The control input is bounded and is shown in Figure 15.

6. CONCLUSION

In this paper, Internal model control using Feed-forward
neural network was implemented. Two FFNN are used,
one as a plant model and other as the controller. The error
in output of plant model is very small which shows the
advantage of the used scheme. The high frequency
components in the inverse model have been removed by
using a low pass filter. The controlled output after using
IMC approximately follows the input as is evident from
the simulation results.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the support provided by
King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia.

Figure 7. Desired Output vs Plant Output for Linear Minimum

Phase Plant

Figure 8. Error between Plant Output and Desired Output for

Linear Minimum Phase Plant

Figure 9. Control Input to Linear Minimum Phase Plant

 Figure 10. Desired Output vs Plant Output for Linear Non-
minimum Phase Plant

Figure 11. Error between Plant Output and Desired Output for

Linear Non-minimum Phase Plant

Figure 12. Control Input to Linear Non-minimum Phase Plant

Figure 13. Desired Output vs Plant Output for Non-linear Plant

Figure 14. Error between Plant Output and Desired Output for

Non-linear Plant

Figure 15. Control Input to Non-linear Plant

REFERENCES

[1] Bouani Faouzi, Chatti Abderrazak, Gallah Tarek,
“Internal Model Control using Neural networks”, IEEE
International Conference on Industrial Technology
(ICIT), 2004, Vol. 1 Page 1121-1126.

[2] Simon Haykin, “Neural Networks: A comprehensive
foundation”, Second Ed., Prentice Hall International, Inc.
1999.

[3] Fukuda T. and T. Shibata, "Theory and applications of
neural networks for industrial control systems", IEEE
Trans. On Industrial Electronics, 1993.

Appendix

Matlab Code

%%%%%%%%Estimating Plant Model using NN %%%%%%%%%%%

clear all;

close all;

clc;

%%%%% Linear Plant %%%%%%%%%%%%%%%%%

%%%%%H(z)=(z^‐1*(0.1065+0.0902*z^‐1))/(1‐z^‐1+0.25*z^‐2)

yp(1:10)=0; %Making initial value zero because yp(n‐1) and yp(n‐2) are required first.

y3(1:10)=0;

e1(1:10)=0;

uc(1:10)=0;

N1=5;

N2=5;

%alpha=.01; %Minimum Phase plant and Non‐Linear Plant

alpha=.005; %Non‐ minimum phase plant

%epoch=100;

p1=1000;

p2=10000;

w1=randn(N1,4)/sqrt(N1*p1);

w11=randn(1,N1)/sqrt(N1*p1);

w2=randn(N2,4)/sqrt(N2*p2);

w22=randn(1,N2)/sqrt(N1*p2);

b1=zeros(N1,1);

b11=zeros(1,1);

b2=zeros(N2,1);

b22=zeros(1,1);

%plant=[‐1 .25 .1065 .0902]; % Minimum Phase Plant

plant=[‐1 .25 1 2]; % Non‐minimum phase plant

%plant=[1 1 ‐1 0.5]; % Non linear plant

t = 0:0.01:5;

lent = length(t);

inp = square(pi*t); % Input

d = randn(1,lent)*.01; % Random Noise

iterations= 10;

for k=1:iterations

 waitbar(k/iterations)

 for i=5:(lent) %For Linear Plant

 %%%%%Passing through INN %%%%%%%%%%%%%%%

 uc(i)=purelin(w22*tansig(w2*[(inp(i‐1)‐e1(i‐1)) (inp(i‐2)‐e1(i‐2)) (inp(i‐3)‐e1(i‐3)) (inp(i‐4)‐e1(i‐4))]'+b2)+b22);

 %uc(i)=y3(i‐1);

 %%%%%%%%%Passing through Plant %%%%%%%%%%

 ph2=[‐yp(i‐1) ‐yp(i‐2) uc(i‐1) uc(i‐2)]; %Linear Plant

 %ph2=[uc(i) 1 abs(uc(i)) abs(uc(i))^2]; %Non Linear Plant

 yp(i)=ph2*plant'+d(i); %%%%Output of Plant with added noise

 %%%%Plant Model using NN%%%%%%%%%

 n1=w1*ph2'+b1;

 a1=tansig(n1);

 n11=w11*a1+b11;

 ym(i)=purelin(n11);

 er(i)=yp(i)‐inp(i);

 e1(i) = yp(i)‐ym(i);

 Y11=‐2*dpurelin(n11,ym(i))*e1(i);

 Y1=diag(dtansig(n1,a1),0)*w11'*Y11;

 w11=w11‐alpha*Y11*a1';

 w1=w1‐alpha*Y1*ph2;

 b11=b11‐alpha*Y11;

 b1=b1‐alpha*Y1;

 %%%%%%%Passing through FNN%%%%%%%%

 %y2(i)=purelin(w11*tansig(w1*[‐y2(i‐1) ‐y2(i‐2) inp(i‐1) inp(i‐2)]'+b1)+b11);

 Err(i)=inp(i)‐e1(i);

 %%%%% Inverse NN Model %%%%%%

 n2=w2*[Err(i‐1) Err(i‐2) Err(i‐3) Err(i‐4)]'+b1;

 a2=tansig(n2);

 n22=w22*a2+b22;

 y3(i)=purelin(n22);

 e2(i) = inp(i)‐ym(i);

 Y22=‐2*dpurelin(n22,y3(i))*e2(i);

 Y2=diag(dtansig(n2,a2),0)*w22'*Y22;

 w22=w22‐alpha*Y22*a2';

 w2=w2‐alpha*Y2*[Err(i‐1) Err(i‐2) Err(i‐3) Err(i‐4)];

 b22=b22‐alpha*Y22;

 b2=b2‐alpha*Y2;

 %%%%%%%%%Passing through filter%%%%%%%%%%

 %[num,den]=butter(11,0.87); %For Minimum Phase Plant

 [num,den]=butter(2,0.25);

 Err(i)=filter(num,den,Err(i));

 end

end

figure(1)

plot(ym);

hold on;

plot(yp,'r');

title('Actual Plant Output vs Plant Model Output after Inter Model Control')

legend('Actual Plant Output','Plant Model Output')

% figure

% plot(e1)

figure(2)

plot(inp);

hold on;

plot(yp,'r');

title('Actual Input vs Plant Output after Inter Model Control')

legend('Actual Input','Plant Model Output')

figure(3)

plot(er);

title('Error in Plant Model')

figure(4)

plot(uc);

title('Controlled Input to Plant')

figure(5)

plot(e2)

title('Error in Inverse Model')

	LCS Report
	Appendix

