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ABSTRACT 

 
This paper deals with the Internal model control of linear 
and non-linear systems using Feed-forward Neural 
network. Control is achieved by estimating the plant and 
then finding its inverse model using neural network. The 
back propagation algorithm is used to train the neural 
networks. Simulation results have been shown for linear 
minimum phase, linear non-minimum phase and non-
linear systems. 
 

Index Terms— Internal Model Control, Feed-
forward Neural Network, Back Propagation algorithm. 

 

1. INTRODUCTION 
 
The problem of controlling a plant consequently a very 
large variety of control techniques are available in the 
literature for modeling of linear and non linear plants. 
These include adaptive modeling techniques for linear 
plant modeling, adaptive inverse modeling, internal 
model control and non-linear Auto Regressive Moving 
Average (ARMA) models. 
        In recent years, neural Networks based techniques 
have also been explored. Neural Network based 
approaches are attractive as neural networks have an 
inherent ability to approximate nonlinear functions and so 
prove useful to model non linear plants. Internal Model 
Control (IMC) structure models the plant in parallel with 
the model of the plant with a controller placed at their 
input. If the model is exact, there will be no feedback to 
the controller. For inexact plant models and in the 
presence of disturbance, the input to the controller is the 
difference of the set point and the feedback signal. Here 
we have used two Feed Forward Neural Networks 
(FFNN), one to model the plant and one as controller. 
The back propagation algorithm is used to determine the 
parameters of the models. 
        In this paper we have compared the performance of  
IMC using neural networks for linear minimum phase, 
linear non-minimum phase and non-linear systems. 
        The outline of this paper is as follows. Section 2 
describes the Internal model control strategy. Section 3 
briefly explains the Feed-forward Neural network 
implemented in this paper. System model is described in 
Section 3. Simulation results are discussed in Section 4 
and the conclusions are summed up in Section 5. 

2. INTERNAL MODEL CONTROL 
 
The Internal Model Control (IMC) philosophy relies on 
the Internal Model Principle, which states that control can 
be achieved only if the control system encapsulates, 
either implicitly or explicitly, some representation of the 
process to be controlled. In particular, if the control 
scheme has been developed based on an exact model of 
the process, then perfect control is theoretically possible. 
Consider, for example, the system shown in the figure 
below: 
 

 
        Figure 1. Open Loop Control Strategy 

 
        A controller, Gୡሺsሻ.,is used to control the process, 
G୮ሺsሻ. Suppose G୮෪ሺsሻ is a model of  G୮ሺsሻ. By setting 
Gୡሺsሻ to be the inverse of the model of the process, 
 
ሻݏ௖ሺܩ                                   ൌ  ሻିଵ   (1)ݏ௣෪ሺܩ
 
        and if G୮ሺsሻ ൌ G୮෪ሺsሻ, (the model is an exact 
representation of the process). 
        Then it is clear that the output will always be equal 
to the setpoint. Notice that this ideal control performance 
is achieved without feedback. What this tells us is that if 
we have complete knowledge about the process (as 
encapsulated in the process model) being controlled, we 
can achieve perfect control. It also tells us that feedback 
control is necessary only when knowledge about the 
process is inaccurate or incomplete. 
        In practice, however, process-model mismatch is 
common; the process model may not be invertible and the 
system is often affected by unknown disturbances. Thus 
the above open loop control arrangement will not be able 
to maintain output at setpoint. Nevertheless, it forms the 
basis for the development of a control strategy that has 
the potential to achieve perfect control. This strategy, 
known as Internal Model Control (IMC), has the general 
structure depicted in Figure 2. 
        In the Figure 2, d(s) is an unknown disturbance 
affecting the system. The manipulated input U(s) is 
introduced to both the process and its model. The process  

 
 



  

Figure 2. IMC Scheme 
 
output, Y(s), is compared with the output of the model, 
resulting in a signal  መ݀ሺݏሻ.That is, 
 
                 መ݀ሺݏሻ ൌ ሻݏ௣ሺܩൣ െ ሻݏሻ൧ܷሺݏ௣෪ሺܩ ൅ ݀ሺݏሻ           (2) 
 
        If  ݀ሺݏሻ is zero for example, then  መ݀ሺݏሻ is a measure 
of the difference in behavior between the process and its 
model. If  ܩ௣ሺݏሻ ൌ  ሻ is equal to theݏሻ, then መ݀ሺݏ௣෪ሺܩ
unknown disturbance. Thus መ݀ሺݏሻ may be regarded as the 
information that is missing in the model, ܩ௣ሺݏሻ and can 
therefore be used to improve control. This is done by 
subtracting መ݀ሺݏሻ from the set point R(s), which is very 
similar to affecting a set point trim. The resulting control 
signal is given by, 
  
ܷሺݏሻ ൌ ൣܴሺݏሻ െ መ݀ሺݏሻ൧ܩ௖ሺݏሻ 
          ൌ ൛ܴሺݏሻ െ ሻݏ௣ሺܩൣ െ ሻݏሻ൧ܷሺݏ௣෪ሺܩ െ ݀ሺݏሻൟܩ௖ሺݏሻ   (3) 
 
        Thus, 
 

                 ܷሺݏሻ ൌ
ሾܴሺݏሻ െ ݀ሺݏሻሿܩ௖ሺݏሻ

1 ൅ ሻݏ௣ሺܩൣ െ ሻݏ௖ሺܩሻ൧ݏ௣෪ሺܩ
                ሺ4ሻ 

 
        Since 
 
                          ܻሺݏሻ ൌ ሻݏሻܷሺݏ௣ሺܩ ൅ ݀ሺݏሻ                   (5) 
 
        The closed loop transfer function for the IMC 
scheme is therefore 
 

            ܻሺݏሻ ൌ
ሾܴሺݏሻ െ ݀ሺݏሻሿܩ௖ሺݏሻܩ௣ሺݏሻ
1 ൅ ሻݏ௣ሺܩൣ െ ሻݏ௖ሺܩሻ൧ݏ௣෪ሺܩ

൅ ݀ሺݏሻ        ሺ6ሻ 

 
        Or 
 

 ܻሺݏሻ ൌ
ሻݏሻܴሺݏ௣ሺܩሻݏ௖ሺܩ ൅ ൣ1 െ ሻݏሻ൧݀ሺݏ௣෪ሺܩሻݏ௖ሺܩ

1 ൅ ሻݏ௣ሺܩൣ െ ሻݏ௖ሺܩሻ൧ݏ௣෪ሺܩ
     ሺ7ሻ 

 
        From this closed loop expression, we can see that if 
ሻݏ௖ሺܩ  ൌ ሻݏ௣ሺܩ  ሻିଵ, and ifݏ௣෪ሺܩ ൌ  ሻ, then perfectݏ௣෪ሺܩ
setpoit tracking and disturbance rejection is achieved. 
Notice that theoretically even if ܩ௣ሺݏሻ ്  ሻ , prefectݏ௣෪ሺܩ
disturbance rejection can still be realized provided 
ሻݏ௖ሺܩ  ൌ  .ሻିଵݏ௣෪ሺܩ

        Additionally, to improve robustness, the effects of 
process model mismatch should be minimised. Since 
discrepancies between process and model behaviour 
usually occur at the high frequency end of the system's 
frequency response, a low-pass filter G୤ሺsሻ  is usually 
added to attenuate the effects of process-model mismatch. 
Thus, the internal model controller is usually designed as 
the inverse of the process model in series with a low-pass 
filter, i.e. GIMCሺsሻ ൌ GୡሺsሻG୤ሺsሻ. The order of the filter is 
usually chosen such that  GୡሺsሻG୤ሺsሻ is proper, to prevent 
excessive differential control action. The resulting closed 
loop then becomes 
 

ܻሺݏሻ ൌ
ሻݏሻܴሺݏ௣ሺܩሻݏூெ஼ሺܩ ൅ ൣ1 െ ሻݏሻ൧݀ሺݏ௣෪ሺܩሻݏூெ஼ሺܩ

1 ൅ ሻݏ௣ሺܩൣ െ ሻݏூெ஼ሺܩሻ൧ݏ௣෪ሺܩ
 

       (8) 
 
        Designing an internal model controller is relatively 
easy. Given a model of the process, G୮෪ሺsሻ, first factor 
G୮෪ሺsሻ into invertible and non-invertible components. 

 
ሻݏ௣෪ሺܩ                               ൌ ௣෪ିܩሻݏ௣ା෪ሺܩ ሺݏሻ                       (9) 
 
        The non-invertible component  G୮෪ି ሺsሻ, contains 
terms which if inverted, will lead to instability and 
realisability problems, e.g. terms containing positive 
zeros and time-delays. 
        Next, set  Gୡሺsሻ ൌ G୮ା෪ሺsሻିଵ and then  GIMCሺsሻ ൌ
GୡሺsሻG୤ሺsሻ, where G୤ሺsሻ is a low pass function of 
appropriate order. 
 

3. NEURAL NETWORKS 
 
The manner in which the neurons of a neural network are 
structured is intimately linked with the learning algorithm 
used to train the network. We may therefore speak of the 
learning algorithm used in the design of the neural 
networks as being structured. In general, there are two 
different classes of network architectures: 
 
3.1. Single Layer Feed-forward Network 
 
In layered neural networks, the neurons are organized in 
the form of layers. In the simplest form of a layered 
network, we have an input layer of source nodes that 
projects onto an output layer of neurons, but not vice 
versa. In other words, the network is strictly a 
feedforward network, as shown in Figure 3. Such a 
network is known as a single layer network.  
 
3.2. Multilayer Feed-forward Network  
 
The second class of feedforward neural network 
distinguishes itself by the presence of one or more hidden 
layers whose computation nodes are correspondingly 
called hidden neurons. The function of the hidden 
neurons is to intervene between the external inputs and 
the network output in some useful manner. By adding one 



  

or more hidden layer, the network is enabled to extract 
higher order statistics. 
 

 
Figure 3. Single layer Feed-forward neural network 

 
        The source nodes in the input layer of the neural 
network supply respective elements of the activation 
pattern (input vector), which constitute the input signals 
applied to the neurons (computable nodes) in the second 
layer (i.e., the first hidden layer). The output signals of 
the second layer are used as the inputs to the third layer, 
and so on for the rest of the network. Typically the 
neurons in each layer of the network have as their inputs 
the output signals of the preceding layer only. The set of 
output signals of the neurons in the output (final) layer of 
the network constitutes the overall response of the 
network to the activation pattern supplied by the source 
nodes in the input (first) layer. The architectural graph in 
Figure 4 shows the connection in a multilayer 
feedforward neural network. A multilayer neural network 
with m source nodes, h hidden nodes and q neurons in the 
output layer is known as an m-h-q network. 
 

 
Figure 4. Multi-layer feed-forward neural network 

 
3.3. Back propagation Algorithm  
 
The error signal at the output of neuron j at iteration n is 
defined by 
 
                              ௝݁ሺ݊ሻ ൌ ௝݀ሺ݊ሻ െ  ௝ሺ݊ሻ                   (10)ݕ
 

        where   ௝݁ሺ݊ሻ refers to the error signal at the output 
of neuron ݆, ௝݀ሺ݊ሻ is the desired response and ݕ௝ሺ݊ሻ is the 
function signal appearing at the output of the  ݆݄ݐ  neuron. 
We define the instantaneous value of the error energy for 
neuron j as  ଵ

ଶ ௝݁
ଶሺ݊ሻ. Correspondingly, the instantaneous 

value  ߦሺ݊ሻ of the total error energy is obtained by 
summing   ଵ

ଶ ௝݁
ଶሺ݊ሻ over all neurons in the output layer; 

these are the only visible neurons for which error signals 
can be calculated directly. We may thus write 
 

ሺ݊ሻߦ                                      ൌ  
1
2෍ ௝݁

ଶ

௝ୀ஼

ሺ݊ሻ                      ሺ11ሻ 

 
        where the set ܥ includes all the neurons in the output 
layer of the network. Let  ܰ denote the total number of 
patterns contained in the training set. The averaged 
squared error energy is obtained by summing  ߦሺ݊ሻ over 
all  ݊  and then normalizing with respect to the set size 
 ܰ,  as shown by 
 

௔௩ߦ                                         ൌ
1
ܰ
෍ߦ
ே

௡ୀଵ

ሺ݊ሻ                       ሺ12ሻ 

 
        The instantaneous error energy ߦሺ݊ሻ and the average 
error energy ߦ௔௩ , is a function of all the free parameters 
of the network. For a given set of training set, 
 ௔௩ represents the cost function as a measure of learningߦ
performance. The objective of the learning process is to 
adjust the free parameters of the network to 
minimize  ߦ௔௩. 
        The sequential updating of weights is preferred 
method for on-line implementation of the back 
propagation algorithm, \for this mode of operation, the 
algorithm cycles through the training sample 
ሼሺݔሺ݊ሻ, ݀ሺ݊ሻሻሽ௡ୀଵே  as follows: 

 
3.3.1. Initialization: Assuming that no prior 
information is available, pick the synaptic weighted and 
thresholds from a uniform distribution whose mean is 
zero and whose variance is chosen to make the standard 
deviation of the induced local fields of the neurons lie at 
the transition between the linear and saturation parts of 
the sigmoid activation function. 
 
3.3.2. Forward Computation: Let a training example 
in the epoch be denoted by ሺݔሺ݊ሻ, ݀ሺ݊ሻሻ, with the input 
vector ݔሺ݊ሻ applied to the input layer of sensory nodes 
and he desired response vector ݀ሺ݊ሻ presented to the 
output layer of computation nodes. Compute the induced 
local fields and function signals of the network by 
preceeding forward through the network, layer by layer. 
The induced local field ݒ௝

ሺ௟ሻሺ݊ሻ for neuron ݆ in layer ݈ is 
 

௝ݒ                            
ሺ௟ሻ ൌ ෍ݓ௝௜

ሺ௟ሻሺ݊ሻݕ௜
ሺ௟ିଵሻሺ݊ሻ

௠బ

௜ୀ଴

                ሺ13ሻ 



  

        where y୧
ሺ୪ିଵሻሺnሻ  the output is signal of neuron i in 

the previous layer l െ 1 at iteration n and w୨୧
ሺ୪ሻሺnሻ is the 

synaptic weight of neuron j in the layer l that is fed from 
neuron i in layer l െ 1. For i ൌ 0, we have y଴

ሺ୪ିଵሻሺnሻ ൌ
൅1 and w଴

ሺ୪ሻሺnሻ ൌ b୨
ሺ୪ሻሺnሻ is the boas applied to neuron 

j in layer l. For a sigmoid function, the output signal of 
neuron j in layer l is 

 
௝ݕ                                    

ሺ௟ሻ ൌ ߮௝ ቀݒ௝ሺ݊ሻቁ                           ሺ14ሻ 
 
        where φ୨ሺ. ሻ denots the activation function 
describing the input-output functional relationship of the 
nonlinearity associated with neuron j. If neuron j is in the 
first hidden layer (i.e., l ൌ 1), set 

 
௝ݕ                                     

ሺ଴ሻሺ݊ሻ ൌ  ௝ሺ݊ሻ                             ሺ15ሻݔ
 
        where x୨ሺnሻ is the jth element of the input 
vector xሺnሻ. If neuron j is in the output layer (i.e., l ൌ L, 
where L is reffered to as the depth of the network), set 
  
௝ݕ                                  

ሺ௅ሻሺ݊ሻ ൌ  ௝ሺ݊ሻ                         (16)݋
 
        Compute the error signal as  
 
                            ௝݁ሺ݊ሻ ൌ ௝݀ሺ݊ሻ െ  ௝ሺ݊ሻ                     (17)݋
 
        where d୨ሺnሻ is the jth  element of the desired 
response vector dሺnሻ. 
 
3.3.3. Backward Computation: Compute the δs (i.e., 
local gradients) of the network, defined by 
 

௝ߜ
ሺ௟ሻ ൌ

ە
ۖ
۔

ۖ
ۓ ௝݁

ሺ௅ሻሺ݊ሻ߮௝ᇱ ቀݒ௝
ሺ௅ሻሺ݊ሻቁ                                               

ܮ ݎ݁ݕ݈ܽ ݐݑ݌ݐݑ݋ ݊݅ ݆ ݊݋ݎݑ݁݊ ݎ݋݂                            

߮௝ᇱ ቀݒ௝
ሺ௟ሻሺ݊ሻቁ෍ߜ௞

ሺ௟ାଵሻሺ݊ሻݓ௞௝
ሺ௟ାଵሻሺ݊ሻ

௞

                 

݈ ݎ݁ݕ݈ܽ ݄݊݁݀݀݅ ݊݅ ݆ ݊݋ݎݑ݁݊ ݎ݋݂                             

 

                   (18) 
      
        where the prime in ߮௝ᇱሺ. ሻ denotes differentiation 
with respect to the argument. Adjust the synaptic weights 
of the network layer ݈  according to the generalized delta 
rule: 
 
௝௜ݓ
ሺ௟ሻሺ݊ ൅ 1ሻ ൌ ௝௜ݓ

ሺ௟ሻ ൅ ௝௜ݓሾߙ
ሺ௟ሻሺ݊ െ 1ሻሿ ൅ ௝ߜߟ

ሺ௟ሻሺ݊ሻݕ௝
ሺ௟ିଵሻ 

                   (19) 
 

        where ߟ is the learning rate parameter and ߙ is the 
momentum constant.  
 

3.3.4. Iteration: Iterate the forward and backward 
computations under points 2 and 3 by presenting new 
epochs of training examples to the network until the 
stopping criterion is met. 
 
 

4. SYSTEM MODEL 
 
4.1 Plant Model using Feed-Forward Neural Network  
 
 

 
 
 

Figure 5. Training of the Feed Forward Neural Network 
 

We consider single input single output systems which are 
described by the following discrete time equation: 
 
ሺ݇ሻݕ ൌ ሾݕሺ݇ െ 1ሻ … ሺ݇ݕ  െ ݊ሻ ݑሺ݇ െ 1ሻ… ሺ݇ݑ  െ ݉ሻሿ 

                   (20) 
 
        where ݕሺ݇ሻ and ݑሺ݇ሻ represent, respectively, the 
output and the input of the system, ݊  and ݉ are the 
orders of ݕሺ݇ሻ and ݑሺ݇ሻ  respectively. Using available 
inputs and outputs a feedforward Neural Network 
(FFNN) can be trained to approximate it. The structure of 
the FFNN, considered in this work, is shown in Figure 5. 
The FFNN is formed by one hidden layer with ݊ଵ  
neurons. The neural model output is given by the 
following relations 
 
௠ሺ݇ሻݕ                  ൌ ݂ ቀܾଶ ൅ ∑ ቀݓଶ௝. ߮௝ሺ݇ሻቁ

௡೗
௝ୀଵ ቁ          (21) 

 
                                        ߮௝ሺ݇ሻ ൌ ݂ሺݏ௝ሺ݇ሻሻ                     (22) 
 
௝ሺ݇ሻݏ                       ൌ ܾଵ ൅ ∑ ሺݓଵ௜. ௜ሺ݇ሻሻݔ

௡భ
௜ୀଵ                  (23) 

 
        where ݔ௜ሺ݇ሻ is the ݄݅ݐ input to the FFNN, ݏ௝ሺ݇ሻ is 
the sum of inputs to the ݆݄ݐ  neuron, ߮௝ሺ݇ሻ is the output 
of the ݆݄ݐ  neuron, and ݕ௠ሺ݇ሻ  is the estimated networks 
output. Here ݂ሺ. ሻ is a derivable and continues function 
e.g. the log sigmoid function, ݓଵ௜  and ܾଵ, are 
respectively, the hidden layer’s weights and biases. ݓଶ௝ 
and ܾଶ are, respectively, the output layers weights and 
bias. The input vector is given by: 
 
ሺ݇ሻݔ ൌ ሾݕሺ݇ െ 1ሻ… ሺ݇ݕ  െ ݊ሻ ݑሺ݇ െ 1ሻ…ݑሺ݇ െ݉ሻሿ் 

                   (24) 
 



  

        The parameters of the (FFNN) Model are estimated 
by using the back propagation algorithm. The criterion to 
be minimised is given by: 
 
ଵܬ                              ൌ

ଵ
ଶ
∑ ሺݕሺ݇ሻ െ ௠ሺ݇ሻሻଶݕ
ேమ
௞ୀଵ              (25) 

 
        where ଶܰ is the number of input output data. 
 
4.2 Inverse Plant Model using Neural Network 
 
The Inverse Neural Network Model (INNM) is 
determined as described in Figure 6. The criterion to be 
minimized is given by: 
 
ଶܬ                    ൌ

ଵ
ଶ
∑ ሺݎሺ݇ ൅ 1ሻ െ ௠ሺ݇ݕ ൅ 1ሻሻଶேయ
௞ୀଵ         (26) 

 
        where ଷܰ is the number of set point and output data. 
 
        The FFNN for the INN is the same as that used for 
the plant model. The performance index ܬଶ is minimized 
until the control sequence which leads to the minimum of 
 .ଶ is foundܬ
 

 
Figure 6. Training of the Inverse Neural Network 

 
 

5. SIMULATION  
 
In this paper, linear SISO plants, with both minimum 
phase and non-minimum phase, and Non-linear transfer 
functions are used. To find direct and inverse model of 
the plant, we have used the feed forward neural network 
with back propagation algorithm. The neural network 
used has two layers, five neurons in the first layer while 
one at the output. 
 
Example 1: Linear SISO Minimum Phase Plant 
 
Let us consider the following linear SISO minimum 
phase plant: 
 

ሻݖሺܪ                    ൌ  
ଵሺ0.1065ିݖ ൅ ଵሻିݖ0.0902
ሺ1 െ ଵିݖ ൅ ଶሻିݖ0.25           ሺ20ሻ 

 
        Plant disturbance used is having normal distribution 
with variance 0.01 and a square wave is used as 
command input. Figure 7 shows that the plant output 
quickly converges to the desired output. The error 
between the plant output and the desired output i.e. 
݁ሺݐሻ ൌ ሻݐሺݕ െ  ሻ is shown in Figure 8 which isݐሺݎ 

significantly small. Control input to the plant is bounded 
and is depicted in Figure 9.  
 
Example 2: Linear SISO Non-minimum Phase Plant 
 
Following linear SISO non-minimum phase plant is used 
in second example: 
 

ሻݖሺܪ                         ൌ  
ଵሺ1ିݖ ൅ ଵሻିݖ2

ሺ1 െ ଵିݖ ൅  ଶሻ               ሺ21ሻିݖ0.25

 
        Plant disturbance is kept same as in the previous 
example. Convergence of plant output is shown in Figure 
10 which is quite good. The error between the plant 
output and the desired output, i.e. ݁ሺݐሻ ൌ ሻݐሺݕ െ  ሻ isݐሺݎ 
shown in Figure 11 which is little bit larger than the 
minimum phase example. The control input is shown in 
Figure 12. It can be observed that the control input is 
bounded even in case of non-minimum phase plant. 
 
Example 3: Non-linear SISO Plant 
 
Consider the following SISO non-linear plant given by 
the following input output relation: 
 
ሺ݊ሻݕ                         ൌ ሺ݊ሻݔ  ൅ ݁ି௔௕௦൫௫ሺ௡ሻ൯                 (22) 
 
        Plant disturbance is kept same as in the previous 
examples. Convergence of plant output is shown in 
Figure 13 where it can be seen that the plant output 
quickly follows the desired output. The error between the  
plant output and the desired output is shown in Figure 14. 
The control input is bounded and is shown in Figure 15. 
 

6. CONCLUSION 
 
In this paper, Internal model control using Feed-forward 
neural network was implemented. Two FFNN are used, 
one as a plant model and other as the controller. The error 
in output of plant model is very small which shows the 
advantage of the used scheme. The high frequency 
components in the inverse model have been removed by 
using a low pass filter. The controlled output after using 
IMC approximately follows the input as is evident from 
the simulation results. 
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Figure 7. Desired Output vs Plant Output for Linear Minimum 

Phase Plant 
 

 
Figure 8. Error between Plant Output and Desired Output for 

Linear Minimum Phase Plant 
 

 
Figure 9. Control Input to Linear Minimum Phase Plant 

 
 

 

 Figure 10. Desired Output vs Plant Output for Linear Non-
minimum Phase Plant 

 

 
Figure 11. Error between Plant Output and Desired Output for 

Linear Non-minimum Phase Plant 
 

 
Figure 12. Control Input to Linear Non-minimum Phase Plant 

  



  

 

 
Figure 13. Desired Output vs Plant Output for Non-linear Plant 
 

 
Figure 14. Error between Plant Output and Desired Output for 

Non-linear Plant 
 

 
Figure 15. Control Input to Non-linear Plant 
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Appendix 

Matlab Code 

%%%%%%%%Estimating Plant Model using NN %%%%%%%%%%% 

 

clear all; 

close all; 

clc; 

 

%%%%% Linear Plant %%%%%%%%%%%%%%%%% 

 

%%%%%H(z)=(z^‐1*(0.1065+0.0902*z^‐1))/(1‐z^‐1+0.25*z^‐2) 

 

yp(1:10)=0;  %Making initial value zero because yp(n‐1) and yp(n‐2) are required first. 

y3(1:10)=0; 

e1(1:10)=0; 

uc(1:10)=0; 

 

N1=5;    

N2=5; 

%alpha=.01;     %Minimum Phase plant and Non‐Linear Plant 

alpha=.005;    %Non‐ minimum phase plant 

%epoch=100; 

 

p1=1000; 

p2=10000; 

 



w1=randn(N1,4)/sqrt(N1*p1); 

w11=randn(1,N1)/sqrt(N1*p1); 

w2=randn(N2,4)/sqrt(N2*p2); 

w22=randn(1,N2)/sqrt(N1*p2); 

 

 

b1=zeros(N1,1); 

b11=zeros(1,1); 

b2=zeros(N2,1); 

b22=zeros(1,1); 

 

%plant=[‐1 .25 .1065 .0902];        % Minimum Phase Plant 

plant=[‐1 .25 1 2];                % Non‐minimum phase plant 

%plant=[1 1 ‐1 0.5];         % Non linear plant 

 

 

t = 0:0.01:5; 

lent = length(t);        

inp = square(pi*t);                 % Input 

d = randn(1,lent)*.01;                % Random Noise 

iterations= 10; 

 

 

for k=1:iterations          

     

    waitbar(k/iterations) 

     



    for i=5:(lent)    %For Linear Plant 

     

    %%%%%Passing through INN %%%%%%%%%%%%%%% 

     

    uc(i)=purelin(w22*tansig(w2*[(inp(i‐1)‐e1(i‐1)) (inp(i‐2)‐e1(i‐2)) (inp(i‐3)‐e1(i‐3)) (inp(i‐4)‐e1(i‐4))]'+b2)+b22); 

    %uc(i)=y3(i‐1); 

     

    %%%%%%%%%Passing through Plant %%%%%%%%%% 

     

    ph2=[‐yp(i‐1) ‐yp(i‐2) uc(i‐1) uc(i‐2)];     %Linear Plant 

    %ph2=[uc(i) 1 abs(uc(i)) abs(uc(i))^2];     %Non Linear Plant 

     

    yp(i)=ph2*plant'+d(i);  %%%%Output of Plant with added noise 

     

    %%%%Plant Model using NN%%%%%%%%% 

     

    n1=w1*ph2'+b1; 

    a1=tansig(n1); 

    n11=w11*a1+b11; 

    ym(i)=purelin(n11); 

     

    er(i)=yp(i)‐inp(i); 

       

    e1(i) = yp(i)‐ym(i);    

               

    Y11=‐2*dpurelin(n11,ym(i))*e1(i); 

    Y1=diag(dtansig(n1,a1),0)*w11'*Y11; 



           

    w11=w11‐alpha*Y11*a1'; 

    w1=w1‐alpha*Y1*ph2; 

       

    b11=b11‐alpha*Y11; 

    b1=b1‐alpha*Y1; 

     

    %%%%%%%Passing through FNN%%%%%%%% 

    %y2(i)=purelin(w11*tansig(w1*[‐y2(i‐1) ‐y2(i‐2) inp(i‐1) inp(i‐2)]'+b1)+b11); 

     

    Err(i)=inp(i)‐e1(i); 

     

    %%%%% Inverse NN Model %%%%%% 

     

    n2=w2*[Err(i‐1) Err(i‐2) Err(i‐3) Err(i‐4)]'+b1; 

    a2=tansig(n2); 

    n22=w22*a2+b22; 

    y3(i)=purelin(n22); 

    e2(i) = inp(i)‐ym(i); 

     

    Y22=‐2*dpurelin(n22,y3(i))*e2(i); 

    Y2=diag(dtansig(n2,a2),0)*w22'*Y22; 

           

    w22=w22‐alpha*Y22*a2'; 

    w2=w2‐alpha*Y2*[Err(i‐1) Err(i‐2) Err(i‐3) Err(i‐4)]; 

       

    b22=b22‐alpha*Y22; 



    b2=b2‐alpha*Y2; 

     

   %%%%%%%%%Passing through filter%%%%%%%%%% 

     

    %[num,den]=butter(11,0.87);      %For Minimum Phase Plant 

    [num,den]=butter(2,0.25); 

    Err(i)=filter(num,den,Err(i)); 

     

    end 

     

end 

 

figure(1) 

plot(ym); 

hold on; 

plot(yp,'r'); 

title('Actual Plant Output vs Plant Model Output after Inter Model Control') 

legend('Actual Plant Output','Plant Model Output') 

 

     

% figure 

% plot(e1) 

figure(2) 

plot(inp); 

hold on; 

plot(yp,'r'); 

title('Actual Input vs Plant Output after Inter Model Control') 



legend('Actual Input','Plant Model Output') 

 

figure(3) 

plot(er); 

title('Error in Plant Model') 

 

figure(4) 

plot(uc); 

title('Controlled Input to Plant') 

 

figure(5) 

plot(e2) 

title('Error in Inverse Model') 
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