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Abstract: This paper introduces the concept of the continuation power flow analysis to be used in voltage stability analysis for control the power in large systems. It starts at some base values of the system and leading to the critical point. It uses the P-V curves to find the knee point of a certain bus. The silent feature of this method is that it remains well-conditioned at the desired point, even when a single precision computation is used. In case study, illustrative examples with three bus system and the IEEE 30 bus systems are shown.     
I. INTRODUCTION

     As power systems become more complex and heavily loaded, voltage stability becomes an increasing serious problem.   Voltage problems have been a subject of great concern during planning and operation of power systems due to the significant number of serious failures believed to have been caused by this phenomenon.   It is therefore necessary to develop Voltage Stability Analysis (VSA) tools in today’s Energy Management Systems (EMS). [3]
     Indeed, numerous authors have proposed voltage stability indexes based upon some type of power flow analysis.   A particular difficulty being encountered in such research is that the Jocobian of a Newton-Raphson power flow becomes singular at the steady state voltage stability limit.   In fact, this stability limit, also called the critical point, is often defined as the point where the power flow Jacobian is singular.   As a consequence, attempts at power flow solutions near the critical point are prone to divergence and error.

      This paper demonstrates how singularity in the Jacobian can be avoided by slightly reformulating the power flow equations and applying a locally parameterized continuation technique [1].   During the resulting, continuation power flow, the reformulated set of equations remains well-conditioned so that divergence and error due to a singular Jacobian are not encountered.   As a result, single precision computations can be used to obtain 
power flow solutions at and near the critical point.
     The purpose of the continuation power flow was to find a continuum of power flow solutions for a given load change scenario.   An early success was the ability to find a set of solutions from a base case up to the critical point in but a single program run.   Since then, however, certain intermediate results of the continuation process have been recognized to provide valuable insight into the voltage stability of the system and the areas prone to voltage collapse.   Along these lines, a voltage stability index based upon results of the algorithm will be presented later in this paper.

     The general principle behind the continuation power flow is rather simple.   It employs a predictor-corrector scheme to find a solution path of a set of power flow equations that have been reformulated to include a load parameter.   As shown in Figure 1, it starts from a known solution corresponding to a different value of the load parameter.   This estimate is then corrected using the same Newton-Rahpson technique employed by a conventional power flow.   The local parameterization mentioned earlier provides a means of identifying each point along the solution path and plays an integral part in avoiding singularity in the Jacobian.
     In the sections that follow, each facet of the continuation power flow will be described and numerical results will be presented to demonstrate the usefulness of this technique in voltage stability analysis.[2]  
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Figure1. An illustration of the Continuation power flow [7]
II. MATHEMATICAL FORMULATION 
A. REFORMULATION OF THE POWER FLOW EQUATIONS
     In order to apply a locally parameterized continuation technique to the power flow problem, a load parameter must be inserted into the equations.   While there are many ways this could be done, only a simple example using a constant power load model will be considered here.

     First let λ represent the load parameter such that
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for each bus i of an n bus system, where the subscripts L, G, and T denote bus load, generation and injection respectively.   The voltages at buses i and j are 
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is the (i , j)th element of YBUS. 
     To simulate a load change, the PLi and QLi terms must be modified.   This can be done by breaking each term into two components.   One component will correspond to the original load at bus i and the other component will represent a load change brought about by a change in the load parameter
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Where the following definitions are made;
PLi0, QLi0 – original load at bus i, active and
                   reactive respectively.

KLi           - multiplier to designate the rate of 
                  load change at bus i as λ changes.

Ψi            - power factor angle of load change
                  at bus i.

S∆base       - a given quantity of apparent power                  which is chosen to provide appropriate scaling of λ.
     In addition, the active power generation term can modified to 
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where PGi is the active generation at bus i in the base case and KGi is a constant used to specify the rate of change in generation as λ varies.
     If these new expressions are substituted into the power flow equations, the result is 


[image: image12.wmf]Ti

i

base

Li

Li

Gi

Ti

i

base

Li

Li

KGi

Gi

Q

S

K

Q

Q

P

vod

S

K

P

K

P

-

-

-

=

-

-

-

+

=

D

D

)

sin

(

0

)

(

)

1

(

0

0

0

0

0

y

l

y

l

l

    
     Notice that values of KLi, KGi, and ψi can be uniquely specified for every bus in the system.   This allows for a very specific variation of load and generation as λ changes.

B. THE APPLICATION OF A CONTINUATION ALGORITHM
     The preceding discussion, the power flow equations for a particular bus i were reformulated to contain a load parameter λ.   The next step is to apply a continuation algorithm to the system of reformulated power flow equations.   If F is used to denote the whole set of equations, the problem can be expressed as  
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where δ represents the vector of bus voltage angles and V represents the vector of bus voltage magnitudes.   As mentioned, the base case solution (δo, Vo, λo) is known via a conventional power flow and the solution path is being sought over a range of λ.   In general, the dimensions of F will 2n1 + n2, where n1 and n2 are the number of P-Q and P-V buses respectively. 
     To solve the problem, the continuation algorithm starts from a known solution and uses a predictor-corrector scheme to find subsequent solutions at different load levels.   While the corrector is nothing more than a slightly modified Newton-Raphson power flow, the predictor is quite unique from anything found in a conventional power flow and deserves detailed attention.

Predicting The Next Solution


     Once a base solution has been found (λ = 0), a prediction of the next solution can be made by taking an appropriately sized step in a direction tangent to the solution path.   Thus, the first task in the predictor process is to calculate the tangent vector.   This tangent calculation is derived by first taking the derivative of both sides of the power flow equations.
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     On the left side of this equation is a matrix of partial derivatives multiplied by a vector of differentials.   The former is the conventional load flow Jacobian augmented by one column (Fλ), while the latter is the tangent vector being sought.   There is, however, an important barrier to overcome before a unique solution can be found for the tangent vector.   The problem arises from the fact that one additional unknown was added when λ was inserted into the power flow equations, but the number of equations remained unchanged.   Thus, one more equation is needed.

     This problem can be solved by choosing a non-zero magnitude (say one) for one of the components of the tangent vector.   In other words, if t is used to denote the tangent vector;
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Where ek is an appropriately dimensioned row vector with all elements equal to zero except the kth, which equals one.   If the index k is chosen correctly, letting tk = ±1 imposes a non-zero norm on the tangent vector and guarantees that the augmented Jacobian will be non-singular at the critical point.   Whether +1 or -1 is used depends on how the kth state variable is changing as the solution path is being traced.   If it is increasing, a +1 should be used and if it decreasing a -1 should be used.   To know more about the state variables, refer to [5].   A method for choosing k and the sign of tk will be presented later in the paper.

     Once the tangent vector has been found by solving, the prediction can be made as follows:
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Where “*” denotes the predicted solution for a subsequent value of λ (loading) and σ is a scalar that designates the step size.   The step size should be chosen so that the predicted solution is within the radius of convergence of the corrector.   While a constant magnitude of σ can be used throughout the continuation process.
Parameterization and the Corrector
     Now that a prediction has been made, a method of correcting the approximate solution is needed.   Actually, the best way to present this corrector is to expand on parameterization, which is vital to the process.

     Every continuation technique has a particular parameterization scheme.   The parameterization provides a method of identifying each solution along the path being traced.   The scheme used in this paper is referred to as local parameterization.

     In local parameterization the original set of equations is augmented by one equation that specifies the value of one of the state variables.   In the case of the reformulated power flow equations, this means specifying either a bus voltage magnitude, a bus voltage angle, or the load parameter λ.   In equation form this can be expressed as follows:

Let
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And let xk = η
Where η is an appropriate value for the kth element of x.

then the new set of equations would be
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Now, once a suitable index k and value of η are chosen, a slightly modified Newton-Raphson power flow method (altered only in that one additional equation and one additional state variable are involved) can be used to solve the set of equations.   This provides the corrector needed to modify the predicted solution found in the previous section.

     Actually, the index k used in the corrector is the same as that used in the predictor and η will be equal to xk*, the predicted value of xk.   thus, the state variable xk is called the continuation parameter.   In the predictor it is made to have a non-zero differential change (dxk = tk = ± 1) and in the corrector its value is specified so that the values of other state variables can be found.   How then does one know which state variable should be used as the continuation parameter?
Choosing the Continuation Parameter
     There are several ways of explaining the proper choice of continuation parameter.   Mathematically, it should correspond to the state variable that has the largest tangent vector component.   More simply put, this would correspond to the state variable that has the greatest rate of change near the given solution.   In the case of a power system, the load parameter λ is probably the best choice when starting from the base solution.   This is especially true if the base case is characterized by normal or light loading.   Under such conditions, the voltage magnitudes and angles remain fairly constant under load change.   On the other hand, once the load has been increased by a number of continuation steps and the solution path approaches the critical point, voltage magnitudes and angles will likely experience significant change.   At this point λ would be a poor choice of continuation parameter since it may change only a small amount in comparison to the other state variables.   For this reason, the choice of continuation parameter should be re-evaluated at each step.   Once the choice has been made for the first step, a good way to handle successive steps is to use
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Where t is the tangent vector with a corresponding dimension m=2n1 + n2 + 1 and the index k corresponds to the component of the tangent vector that is maximal.   When the continuation parameter is chosen, the sign of its corresponding tangent component should be noted so that the proper value of +1 or -1 can be assigned to tk in the subsequent tangent vector calculation.
Sensing the Critical Point
     The only thing left to do amid the predictor-corrector process is to check to see if the critical point has been passed.   This is easily done if one keeps in mind that the critical point is where the loading (and therefore λ) reaches a maximum and starts to decrease.   Because of this, the tangent component corresponding to λ (i.e., dλ) is zero at the critical point and is negative beyond the critical point.   Thus, once the tangent vector has been calculated in the predictor step, a test of the sign of the dλ component will reveal whether or not the critical point has been passed.

Summary of the Process
     Now that the continuation power flow has been described is some detail, a summary of the process may be helpful.   Figure 2 provides a brief summary in the form of a flow chart.
Sensitivity Information from the Tangent Vector
     Up until now, the discussion has been focused on finding a continuum of power flow solutions up to and just past the critical point.   Although the accomplishment of this primary task is welcome, even more information is available from intermediate results.   In fact, both a voltage stability index and an indicator of “weak” buses are available are available at almost no extra calculation cost by analyzing the tangent vector at each step.

     In the continuation process, the tangent vector proves useful because it describes the direction of the solution path at a corrected solution point.   A step in the tangent direction is used to estimate the next solution.   


[image: image25]
Figure 2. A flow chart of the continuation power flow

Not so apparent though, are the detail of exactly how this analysis should be performed so that a stability index and identification of weak buses are obtained.

     First of all, in discussing weak buses, the term “weak” must be defined.   In the context of this paper, the weakest bus is the one that is nearest to experiencing voltage collapse.   If one were to think of this in terms of a received power versus bus voltage (P-V) curve, the weak bus would be the one that is closest to the turning point or “knee” of the curve.   Equivalently, a weak bus is one that has a large ratio of differential change in voltage to differential change in load
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.   But here it is important to think about which load is changing and which load change will affect the stability of the bus.   If bus i was affected only by its own load change, then the ratio dVi/dPLi would be a good indicator of relative weakness.   However, one must concede that load changes at other buses in the system will also play a key role.   For this reason, the best method of deciding which bus is nearest to its voltage stability limit is to find the bus with the largest dVi/dPTOTAL, where dPTOTAL is the differential change in active load for the whole system.  

     The differential change in voltage at each bus for a given differential change in system load is available from the tangent vector.   Using the reformulated power flow equations, the differential change in active system load is 
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     Thus, in light of the previous discussion, the weakest bus would be
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Since the value of Cdλ is the same for each dV element in a given tangent vector, choosing the weakest bus is as easy as choosing the bus with the largest dV component.   Note, though, that the location of the weakest bus may change as the load shifts in intensity, characteristic, and location.
     When the weakest bus, j, reaches its steady state voltage stability limit, the ratio of –dVj/dPTOTAL will become infinite, or equivalently, the ratio of –dPTOTAL/dVj would be zero.   This latter ratio, being easier to handle numerically, makes a good voltage stability index for the entire system.   This index will be high when the weakest bus is far from instability but will be zero when the weakest bus experiences voltage collapse.   (Then negative sign is used so that the index will be positive before the critical point is encountered and negative afterwards.)

     Alternatively, a ratio of –dVi/dQTOTAL could also be used to compare weak buses and -dQTOTAL /dVj would accompany this as a voltage stability index.    In this case, dQTotal  would be expressed as a constant multiplied by dλ as was done for dPTOTAL .    The use of dQTOTAL is, of course, required if a scenario involves a change in reactive load only.   

III. CASE STUDY
     The continuation power flow just described was coded in MATLAB (appendix B).   It is applied to two systems; a 3 bus system and IEEE 30-bus system.

A. 3 Bus Systems
     The data of this system could found in [4] and the configuration is in figure 3.   Here, we would like to determine the voltae stability by two procedures.   

[image: image29]
Figure 3. A 3 bus system

     Let’s start with the first one.   First, we start with solving any system with regular Newton Raphson Method for load flow analysis.   After that, the load is increase uniformly.    The obtained graph (Voltage vs Power) is shown in figure 4.   As it is clear that the graph oscillates as it reaches the knee point due to the singularity of the Jacobian.   To avoid this, the continuation method should be used to solve this problem which is going to be implemented in the second procedure.


[image: image30]
Figure 4. V vs P in 3 Buses Systems
     The second procedure is to start with regular Newton Raphson Method to get the base power load flow data.   Then, the state variable related to the load is increased.   Before reaching the knee point, the system is affected more by other state variables like voltage or delta.   This is because at the knee point the voltage changes rapidly for very small change in power.     
     Figure 5 shows the graph obtained when we did the study on bus 3 of the system.    As it is clear, the obtained graph has the same shape of the graph on figure 1.
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Figure 5. P-V curve of bus 3 of the 3-bus system

     The maximum load on bus 3 is 15.5 pu as it can be noted from the above graph.

B. IEEE 30-Bus System

     Now, we would like to test this method on the IEEE 30 bus system.   Since the system is popular for voltage stability research, various load increase scenarios have already been described in many IEEE papers. In this paper, every bus of this system will be tested to show the capability of this method.   Also, test result from other paper [8] will be shown to compare between the results.   The IEEE 30-bus system configuration is shown in appendix A and its data could be found in [4].   The codes of the program for the obtained results are in appendix B. 
     The same analysis flowed with the 3 bus system would be used here in the IEEE 30 bus system.   First, a load flow analysis using Newton Raphson Method was used to obtain the base load flow data of the system.   Then, the load was increased uniformly.   The curve obtained could be shown in figure 6.   As it can be seen, as we reache the knee point, the graphs starts to oscillate and it is too difficult to determine the exact knee point.   This is because the Jacobian becomes singular.   For this purpose, the continuation method was proposed to avoid this.  
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Figure 6. Voltage vs Power for Load Steady Increase 
   
     Now, the continuation method is going to be used here.   First, the Newton Raphson method is applied to find the base load flow data.   Then, the state variable related to the load was increased until we experience a big change in the voltage.   At this point, we should change the state variable to the voltage or delta to obtain the desired curve.

     Figure 7 shows the P-V curves for the 30 buses.   The shape is like the one in figure 1.   As it is clear, the continuation method solved the problem of the oscillation faced when we didn’t apply the continuation method.   
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Figure 7. P-V for all buses
    The most interested bus in our study is bus 30 which is the weakest bus.   The weakest bus is defined as the bus that is closest to the knee point.   Figure 8 has P-V curve for bus 30.
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Figure 8. P-V for Bus 30 by Continuation Method
     It could be noticed that the maximum power that the system could be loaded is almost 0.38 pu.   After that, the whole system might collapse any time.   This result is inline with the results obtained in [8] which used the V-I characteristic method to find voltage stability limit.   Figure 9 shows this result for bus 30 obtained in [8].
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Figure 9. P-V for Bus 30 by V-I characteristic method.
VI. CONCLUSION 
     The examples presented in this paper have demonstrated both the capability and usefulness of the continuation power flow. Solution paths that went up to and beyond the critical point were found for various load change scenarios. In each case divergence was not a problem as it would have been in a conventional Newton-Raphson power flow. As an additional benefit, intermediate results from the tangent predictor of the continuation process proved useful in analyzing the voltage stability of the system. Both a stability index and a method of identifying the weakest buses in the system were readily obtained. Although the indexes uses were effective and meaningful, there is great potential for developing more sophisticated indexes from the same tangent vector information.
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      AVLT=[AVLT VLT];


      ADLT=[ADLT DLT];


      ALMD=[ALMD LMD];


   


   %figure(1)


   %hold on


   %plot(LMD, VLT(PQI(nPQ)),'X')


   %axis([0 0.4 0 1.1])


   %pause


   


   %disp('Corrected')


   %[LMD SLN(indx)];


   


   


   % Findining Maximum Change


   if in> 4


      DFR=SLN-OSLN;


      DFR1=DFR;


      DFR1(29)=DFR1(29)/2;


      DFR1(54)=DFR1(54)*3.5;


      [MC indx]=max(abs(DFR1));


   


   dd=sign(DFR1(indx));


   





end








if LMD > MaxLMD


   MaxLMD=LMD;		% Maximum Loading Point (MLP)


end








   OSLN=SLN;


   


end





% GRAPHICAL OTPUTS





MaxLMD





figure(1)


plot(ALMD,AVLT(30,:))


axis([0 0.4 0 1.1])


ylabel('Voltage in p.u.')


xlabel('Power p.u.')


title('Voltage Vs Power USING CONTINUATIN METHOD ')


grid





figure(2)


plot(ALMD,ADLT(30,:))


axis([0 0.4 -1.4 0])


ylabel('Delta in rad')


xlabel('Power p.u.')


title('Delta Vs Power USING CONTINUATIN METHOD ')


grid





figure(3)


plot(ALMD,AVLT)


axis([0 0.4 0 1.1])


ylabel('Voltage in p.u.')


xlabel('Power p.u.')


title('Voltages Vs Power USING CONTINUATIN METHOD ')


grid





figure(4)


plot(ALMD,ADLT)


axis([0 0.4 -1.4 0])


ylabel('Delta in rad')


xlabel('Power p.u.')


title('Deltas Vs Power USING CONTINUATIN METHOD ')


grid


























  %Augementing the jacobian


   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


   nJCBN =length(JCBN)+1;	 % SIZE OF THE AUGEMENTED JACOBIAN


   JAA=zeros(nJCBN-1,1);





   JAA(PQI(nPQ)-1)=1;		% LOADDED BUSES ARE GIVEN 1	


   ek=zeros(1,nJCBN);		% ZERO VECTOR


   ek(indx)=1;					%


   


   MJCBN=[JCBN JAA] ;


   MJCBN(nJCBN,:)= ek ;


   MAA=det(MJCBN);


   


   


   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


   %PREDICTOR


   


   TG=zeros(nJCBN,1);


   TG(indx)=1*dd;  		% TANGENT VECTOR


   


   delDX=inv(MJCBN)*TG;	% SOLVING FOR THE VECTOR IN THE DIRCTION OF THE SLOP


   delDX(indx)=1*dd;		% ONE ELEMENT IS EQUAL TO 1 IN THE DIRECTION OF INCREASE


   DX=DX+alpha*delDX;	% THE PREDICTED SOLOUTION


   


   


   dDLT=DX(1:nPVQ);


   dVLT=DX(nPVQ+1:nJCBN-1);


   dLMD=DX(nJCBN);


   


     


      


   DLT(PVI)=DLT(PVI)+dDLT;


   VLT(PQI)=VLT(PQI)+dVLT;


   LMD=LMD+dLMD;


   


   SLN=[DLT(PVI); VLT(PQI); LMD];		% RESULTS AR SAVED


   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


   


      


   %figure(1)


   %hold on


   %plot(LMD, VLT(PQI(nPQ)),'o')


   %pause


   


  





   %disp('predicted')


   %[LMD SLN(indx)];








for i=1:n


   % calculate number of PV buses


   if BD(i,2)==2  ; 


      nPV=nPV+1;       %number of PV Buses


      nPVQ=nPVQ+1;


      PVI=[PVI BD(i,1)]; % PV buses indexes


   end


   


   % calculate number of PQ buses


   if BD(i,2)==0 ;





      nPQ=nPQ+1;			


      nPVQ=nPVQ+1;


      PQI=[PQI BD(i,1)];


      PVI=[PVI BD(i,1)];


   end   


end














% CALCULATING INITIAL VALUES


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%





   Pg=BD(:,7)/100;


   Qg=BD(:,8)/100;


   Pd=BD(:,5)/100;


   Qd=BD(:,6)/100;





for i=1:8


   JCBN = form_jac(VLT',DLT',Y,PVI,PQI);


   nJCBN =length(JCBN)+1;


   [delP,delQ] =calc(n,BTP,VLT',DLT',Y,Pg',Qg',Pd',Qd');


   


   DC=[delP(PVI); delQ(PQI)];


   DX=JCBN\DC;


   


   dDLT=DX(1:nPVQ);


   dVLT=DX(nPVQ+1:nJCBN-1);


   


   DLT(PVI)=DLT(PVI)+dDLT;


   VLT(PQI)=VLT(PQI)+dVLT;


end








hold on


plot(LMD, VLT(PQI(nPQ)),'+')


SLN=[DLT(PVI); VLT(PQI); LMD];


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


% START OF THE CONTINUATION METHOD


indx=nJCBN;


DX=0; %RESETTING TO ZERO





while LMD >=0;


   


   in=in+1;


  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


   % READING POWER DATA


   Pg=BD(:,7)/100;


   Qg=BD(:,8)/100;


   Pd=BD(:,5)/100;


   Qd=BD(:,6)/100;


  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


  	% finding Jacobian


   JCBN = form_jac(VLT',DLT',Y,PVI,PQI);





%                                        Line code


%         Bus bus   R      X     1/2 B   = 1 for lines


%         nl  nr  p.u.   p.u.   p.u.     > 1 or < 1 tr. tap at bus nl


linedata=[1   2   0.0192   0.0575   0.02640    1


          1   3   0.0452   0.1852   0.02040    1


          2   4   0.0570   0.1737   0.01840    1


          3   4   0.0132   0.0379   0.00420    1


          2   5   0.0472   0.1983   0.02090    1


          2   6   0.0581   0.1763   0.01870    1


          4   6   0.0119   0.0414   0.00450    1


          5   7   0.0460   0.1160   0.01020    1


          6   7   0.0267   0.0820   0.00850    1


          6   8   0.0120   0.0420   0.00450    1


          6   9   0.0      0.2080   0.0    0.978


          6  10   0         .5560   0      0.969


          9  11   0         .2080   0          1


          9  10   0         .1100   0          1


          4  12   0         .2560   0      0.932


         12  13   0         .1400   0          1


         12  14    .1231    .2559   0          1


         12  15    .0662    .1304   0          1


         12  16    .0945    .1987   0          1


         14  15    .2210    .1997   0          1


         16  17    .0824    .1923   0          1


         15  18    .1073    .2185   0          1


         18  19    .0639    .1292   0          1


         19  20    .0340    .0680   0          1


         10  20    .0936    .2090   0          1


         10  17    .0324    .0845   0          1


         10  21    .0348    .0749   0          1


         10  22    .0727    .1499   0          1


         21  22    .0116    .0236   0          1


         15  23    .1000    .2020   0          1


         22  24    .1150    .1790   0          1


         23  24    .1320    .2700   0          1


         24  25    .1885    .3292   0          1


         25  26    .2544    .3800   0          1


         25  27    .1093    .2087   0          1


         28  27     0       .3960   0      0.968


         27  29    .2198    .4153   0          1


         27  30    .3202    .6027   0          1


         29  30    .2399    .4533   0          1


          8  28    .0636    .2000   0.0214     1


          6  28    .0169    .0599   0.065      1];





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%Determin the size of the matrix


n=length(BD(:,1));





% Calculating YBUS


Y=Ybus(LD);





% READING DATA FROM THE SYSTEM DATA


BTP=BD(:,2);


VLT=BD(:,3);


DLT=BD(:,4);


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


nPQ=0;


nPV=0;


nPVQ=0;











%	This program plots the P-V cuve of the 30 bus in the IEEE 30 BUS system


%	USING CONTINUATN METHOD	


%	


%	EE 520 POWER SYSTEM ANALYSIS


%	TERM REPORT "STUDY ON CONTINUATION POWER FLOW"


%	


%	DONE BY 


%	HUSSAIN AL-AWAMI		ID#980876 


%	02-June-2007











warning off


clear 


clf





% INITIALIZING SOME VARIABLES TO BE USED


in=0;


LMD=0;


VLT=[];AVLT=[];


DLT=[];ADLT=[];


ALMD=[];


DX=0;


OSLN=0;


MaxLMD=0;


DFR=0;





% INITIALIZING INDECIES 


PQI=[];PVI=[];





% SOME VARIABLES


dd=1	;			% DIRECTION OF INCREASE


indx=54;			% INITIAL INCREASE TO BE IN POWER


alpha=0.005;	% STEP SIZE








%	SYSTEM DATA


%        IEEE 30-BUS TEST SYSTEM (American Electric Power)


%        Bus Bus  Voltage Angle   ---Load---- -------Generator----- Injected


%        No  code Mag.    Degree  MW    Mvar  MW  Mvar Qmin Qmax     Mvar


busdata=[1   1    1.06    0.0     0.0   0.0    0.0  0.0   0   0       0


         2   2    1.043   0.0   21.70  12.7   40.0  0.0 -40  50       0


         3   0    1.0     0.0     2.4   1.2    0.0  0.0   0   0       0


         4   0    1.06    0.0     7.6   1.6    0.0  0.0   0   0       0


         5   2    1.01    0.0    94.2  19.0    0.0  0.0 -40  40       0


         6   0    1.0     0.0     0.0   0.0    0.0  0.0   0   0       0


         7   0    1.0     0.0    22.8  10.9    0.0  0.0   0   0       0


         8   2    1.01    0.0    30.0  30.0    0.0  0.0 -10  40       0


         9   0    1.0     0.0     0.0   0.0    0.0  0.0   0   0       0


        10   0    1.0     0.0     5.8   2.0    0.0  0.0   0   0      19


        11   2    1.082   0.0     0.0   0.0    0.0  0.0  -6  24       0


        12   0    1.0     0       11.2  7.5    0    0     0   0       0


        13   2    1.071   0        0    0.0    0    0    -6  24       0


        14   0    1       0       6.2   1.6    0    0     0   0       0


        15   0    1       0       8.2   2.5    0    0     0   0       0


        16   0    1       0       3.5   1.8    0    0     0   0       0


        17   0    1       0       9.0   5.8    0    0     0   0       0


        18   0    1       0       3.2   0.9    0    0     0   0       0


        19   0    1       0       9.5   3.4    0    0     0   0       0


        20   0    1       0       2.2   0.7    0    0     0   0       0


        21   0    1       0      17.5  11.2    0    0     0   0       0


        22   0    1       0       0     0.0    0    0     0   0       0


        23   0    1       0       3.2   1.6    0    0     0   0       0


        24   0    1       0       8.7   6.7    0    0     0   0      4.3


        25   0    1       0       0     0.0    0    0     0   0       0


        26   0    1       0       3.5   2.3    0    0     0   0       0


        27   0    1       0       0     0.0    0    0     0   0       0


        28   0    1       0       0     0.0    0    0     0   0       0


        29   0    1       0       2.4   0.9    0    0     0   0       0


        30   0    1       0      10.6   1.9    0    0     0   0       0];
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