Solution of Linear State – Space Equations

$$x(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t) \qquad x(t_o) = x_o$$

The solution of x(t) = A(t)x(t) + B(t)u(t) $x(t_o) = x_o$ can be decomposed into two parts:

(a) The zero-input solution, i.e. solution of

$$x_{ZI}(t) = A(t)x_{ZI}(t) \qquad x_{ZI}(t_o) = x_o$$

(b) The zero-state solution, i.e.

$$x_{ZS}(t) = A(t)x_{ZS}(t) + B(t)u(t)$$
 $x_{ZS}(t_o) = 0$

In other words, x(t) which solves

•

$$x(t) = A(t)x(t) + B(t)u(t) \qquad x(t_o) = x_o$$

is given by $x(t) = x_{ZI}(t) + x_{zs}(t)$

To see this

•

$$x(t) = x_{ZI} + x_{ZS}$$

$$= A(t)x_{ZI}(t) + A(t)x_{ZS}(t) + B(t)u(t)$$

= $A(t)(x_{ZI}(t) + x_{ZS}(t)) + B(t)u(t)$
= $A(t)x(t) + B(t)u(t)$

Also
$$x(t_o) = x_{ZI}(t_o) + x_{ZS}(t_o)$$

= $x_o + 0 = x_o$

This proves the solution x(t) can be decomposed into two parts.

We will therefore try to find each solution separately.

We begin with the zero-input solution.

We want to solve the differential equation

$$\dot{x(t)} = A(t)x(t)$$

The differential equation has a unique solution for every initial state x_o . Since there are infinitely many possible initial states, then the differential equation has infinitely many solutions.

Theorem :

The set of solutions of x(t) = A(t)x(t) $x(t_o) = x_o$ is an ndimensional vector space, where n is the number of state-variable.

Review of Linear Algebra

Set: It is a collection of elements

EXAMPLES:

- R : Set of Real numbers
- C: Set of all complex numbers
- Z : Set of all integers
- Also : Set of $\{0,1\}$
 - : Set of all polynomials of degree <5
 - : Set of all 2×2 real matrices

Field: A field consists of a set, denoted by \Im , of elements called scalars and two operations called addition or + and multiplication or . with the operations defined according to the following axioms:

(a) To every pair of elements α_1 and α_2 the sum $\alpha_1 + \alpha_2$ and the product $\alpha_1 \cdot \alpha_2$ exist in \Im .

(b) Addition and multiplication are associative

$$(\alpha_1 + \alpha_2) + \alpha_3 = \alpha_1 + (\alpha_2 + \alpha_3)$$

$$(\alpha_1 \cdot \alpha_2) \cdot \alpha_3 = \alpha_1 \cdot (\alpha_2 \cdot \alpha_3)$$

(c) Addition and multiplication are commutative $\alpha_1 + \alpha_2 = \alpha_2 + \alpha_1$

 $\alpha_1 \cdot \alpha_2 = \alpha_2 \cdot \alpha_1$

(d) Multiplication is distributive over addition

$$\alpha_1 \cdot (\alpha_2 + \alpha_3) = (\alpha_1 \cdot \alpha_2) + (\alpha_1 \cdot \alpha_3)$$

(e) \exists element in \Im , denoted by 0 such that

 $\alpha_1 + 0 = \alpha_1$

(f) \exists element in \mathfrak{I} , denoted by 1 such that

 $1 \cdot \alpha_1 = \alpha_1$

(g) To each α in \Im there corresponds an element - α in

 $\ensuremath{\mathfrak{I}}$, such that

$$\alpha + (-\alpha) = 0$$
 (Additive Inverse)

(f) To each α in \Im there corresponds an element α in \Im such that

 $\alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1$ (Multiplicative Inverse)

Examples

- The set R of all real numbers with the usual addition and multiplication is a field.
- The set C of all complex numbers with the usual addition and multiplication is a field.

Notice that R is a sub field of C

• The set of rational functions with real coefficients with the usual addition and multiplication of polynomials is a field.

The set {0,1} of binary numbers is a field if the rules of addition and multiplication are appropriately defined i.e. if

+	0	1	•	0	1
0	0	1	0	0	0
0 1	1	0	1	0	1

The following sets of familiar numbers do not form fields:

- The set of all positive (negative) real numbers. Since the additive inverse is not in the set.
- The set of all integers. Since the multiplicative inverse is not integer.