Feedback Connection State Space Model

y_{2}

$$
\begin{array}{ll}
\dot{x_{1}}(t)=A_{1} x_{1}(t)+B_{1} u_{1}(t) & x_{2}(t)=A_{2} x_{2}(t)+B_{2} u_{2}(t) \\
y_{1}(t)=C_{1} x_{1}(t)+D_{1} u_{1}(t) & y_{2}(t)=C_{2} x_{2}(t)+D_{2} u_{2}(t)
\end{array}
$$

but

$$
\begin{aligned}
& u_{1}=u \quad y_{2}=u \quad C_{2} x_{2}-D_{2} y_{1} \\
&=u \quad C_{2} x_{2} \\
& D_{2}\left(C_{1} x_{1}+D_{1} u_{1}\right)
\end{aligned}
$$

or

$$
\left(I+D_{2} D_{1}\right) u_{1}=u \quad D_{2} C_{1} x_{1}-C_{2} x_{2}
$$

solving for u_{1} gives

$$
\begin{aligned}
& u_{1}=\left(I+D_{2} D_{1}\right)^{-1}\left[\begin{array}{ll}
u & D_{2} C_{1} x_{1}-C_{2} x_{2}
\end{array}\right] \\
& x_{1}=\left[A_{1}-B_{1}\left(I+D_{2} D_{1}\right)^{-1} D_{2} C_{1}\right] x_{1}-B_{1}\left(I+D_{2} D_{1}\right)^{-1} C_{2} x_{2} \\
& +B_{l}\left(I+D_{2} D_{1}\right)^{-1} u \\
& y=y_{1}=C_{1} x_{1}+D_{1} u_{1}=C_{1} x_{1}+D_{1}\left(u-y_{2}\right) \\
& =C_{1} x_{1}+D_{1} u \quad D_{1}\left(C_{2} x_{2}+D_{2} y\right) \\
& y=\left(I+D_{1} D_{2}\right)^{-1}\left[C_{1} x_{1}+D_{1} u \quad D_{1} C_{2} x_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=A_{2} x_{2}+B_{2} y \\
& {\left[\begin{array}{c}
\dot{x_{1}} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{1}-B_{1}\left(I+D_{2} D_{1}\right)^{-1} D_{2} C_{1} & -B_{1}\left(I+D_{2} D_{1}\right)^{-1} C_{2} \\
B_{2}\left(I+D_{1} D_{2}\right)^{-1} C_{1} & A_{2}-B_{2}\left(I+D_{1} D_{2}\right)^{-1} D_{1} C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} \\
& \qquad+\left[\begin{array}{c}
B_{1}\left(I+D_{2} D_{1}\right)^{-1} \\
B_{2}\left(I+D_{1} D_{2}\right)^{-1} D_{1}
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
\left(I+D_{1} D_{2}\right)^{-1} C_{1} & -\left(I+D_{1} D_{2}\right)^{-1} D_{1} C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left(I+D_{1} D_{2}\right)^{-1} D_{1} u
\end{aligned}
$$

Feedback Connection

y_{2}
$\mathrm{y}(\mathrm{s})=\mathrm{G}_{1}(\mathrm{~s}) \mathrm{u}_{1}(\mathrm{~s})=\mathrm{G}_{1}(\mathrm{~s})\left(\mathrm{u}(\mathrm{s})-\mathrm{G}_{2}(\mathrm{~s}) \mathrm{y}(\mathrm{s})\right)$
$\left(\mathrm{I}+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})\right) \mathrm{y}=\mathrm{G}_{1}(\mathrm{~s}) \mathrm{u}(\mathrm{s})$

We assume $\left(\mathrm{I}^{2}+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})\right)^{-1}$ exist
(i.e. $\operatorname{det}\left(\left(\mathrm{I}+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})\right)\right.$
$\mathrm{y}(\mathrm{s})=\left(\mathrm{I}+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})\right)^{-1} \mathrm{G}_{1}(\mathrm{~s}) \mathrm{u}(\mathrm{s})$
or

$$
\mathrm{G}(\mathrm{~s})=\left(\mathrm{I}+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})\right)^{-1} \mathrm{G}_{1}(\mathrm{~s})=\mathrm{G}_{1}\left(\mathrm{I}+\mathrm{G}_{2}(\mathrm{~s}) \mathrm{G}_{1}(\mathrm{~s})\right)^{-1}
$$

Note that :
Making the assumption that $\operatorname{det}\left(\left(I+G_{1}(s) G_{2}(s)\right)\right.$
essential for the closed loop mathematical formulation to make sense. To see this

Consider the example:

$$
\begin{aligned}
& G_{1}(s)=\left[\begin{array}{cc}
\frac{1-s}{s} & \frac{1}{s+1} \\
\frac{1}{s} & \frac{-s}{s+1}
\end{array}\right] \\
& I+G_{1}(s) G_{2}(s)=\left[\begin{array}{cc}
\frac{1}{s} & \frac{1}{s+1} \\
\frac{1}{s} & \frac{1}{s+1}
\end{array}\right]
\end{aligned}
$$

And the $\operatorname{det}\left(I+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})\right)=0$
From the block diagram, $\left(\mathrm{I}+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})\right) \mathrm{y}(\mathrm{s})=\mathrm{G}_{1}(\mathrm{~s}) \mathrm{u}(\mathrm{s})$
So

$$
=\left[\begin{array}{cc}
\frac{1}{s} & \frac{1}{s+1} \\
\frac{1}{s} & \frac{1}{s+1}
\end{array}\right]\left[\begin{array}{l}
y_{1}(s) \\
y_{2}(s)
\end{array}\right]=\left[\begin{array}{cc}
\frac{1-1}{s} & \frac{1}{s+1} \\
\frac{1}{s} & \frac{-s}{s+1}
\end{array}\right]\left[\begin{array}{l}
u_{1}(s) \\
u_{2}(s)
\end{array}\right]
$$

If

$$
u(s)=\left[\begin{array}{c}
\frac{1}{s} \\
0
\end{array}\right] \text {, then we have }\left[\begin{array}{cc}
\frac{1}{s} & \frac{1}{s+1} \\
\frac{1}{s} & \frac{1}{s+1}
\end{array}\right]\left[\begin{array}{l}
y_{1}(s) \\
y_{2}(s)
\end{array}\right]=\left[\begin{array}{c}
\frac{1-s}{s^{2}} \\
\frac{1}{s^{2}}
\end{array}\right]
$$

For which there is no solution

We have seen that $\operatorname{det}\left(\left(I+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})\right)\right.$ essential.

Even when $\left(\left(I+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})\right)^{-1}\right.$ exists the transfer function from $\mathrm{u}(\mathrm{s})$ to another point in the loop may not be proper.

Example:

Here $\operatorname{det}\left(\mathrm{I}+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})\right)=1+\mathrm{G}(\mathrm{s})=1+-\mathrm{s} /(\mathrm{s}+1)=$ $1 /(s+1) 0$

However

$$
G(s)=\frac{\frac{-s}{s+1}}{1+\frac{-s}{s+1}}=\frac{-s}{s+1-s}=-s
$$

Improper System

Improper transfer functions do not correspond to good systems.

Problem??

NOISE

Well-posedness

Definition: Let every subsystem of a composite system be described by a rational transfer function. Than the composite system is said to be well posed if the transfer function of every subsystem is proper and the closed transfer function from any point chosen as an input terminal to every other point along the directed path is well defined and proper.

Theorem: Consider the feedback system

Let $\mathrm{G}_{1}(\mathrm{~s})$ and $\mathrm{G}_{2}(\mathrm{~s})$ be q p and p q proper rational transfer matrices. Than the overall transfer function

$$
\mathrm{G}(\mathrm{~s})=\mathrm{G}_{1}(\mathrm{~s})\left(\mathrm{I}+\mathrm{G}_{2}(\mathrm{~s}) \mathrm{G}_{1}(\mathrm{~s})\right)^{-1}
$$

is proper if and only if $\mathrm{I}+\mathrm{G}_{2}(\quad 1($

Discrete Time Systems

Inputs and outputs of discrete-time systems are defined only at discrete instants of time, $\mathrm{t}_{\mathrm{o}}, \mathrm{t}_{1}$
instants of time are assumed to be an integral multiplies of some basic unit T, say
$\mathrm{t}_{\mathrm{o}}=0, \mathrm{t}_{1}=\mathrm{T}, \mathrm{t}_{2}$
in which case T is often not explicitly shown and assumed that the time parameter, denoted by k, takes integral values,
so we define $\{\mathrm{y}(\mathrm{k})=\mathrm{y}(\mathrm{kT})\}$ and $\{\mathrm{u}(\mathrm{k})=\mathrm{u}(\mathrm{kT})\}$
as the discrete output and input sequences.

For a linear relaxed discrete time system, we have

$$
y(k)=\sum_{m=-\infty}^{\infty} g(k, m) u(m)
$$

where $g(k, m)$ is called the weighting sequence or the impulse response. It is the response to the input

$$
\delta(n-m)= \begin{cases}1 & n=m \\ 0 & n \neq m\end{cases}
$$

If the system is causal, and relaxed at k_{o} then we have

$$
y(k)=\sum_{m=k}^{k} g(k, m) u(m)
$$

If the system is time invariant and if we take $k_{o}=0$, then we have

$$
y(k)=\sum_{m=0}^{k} g(k-m) u(m) \quad *
$$

Z Transform

The Z Transform of the sequence \{
is defined as

$$
u(z)=\mathrm{Z}\{u(k)\}=\sum_{k=0}^{\infty} u(k) z^{-k}
$$

If the Z transform is applied to * then
$\mathrm{y}(\mathrm{z})=\mathrm{G}(\mathrm{z}) \mathrm{u}(\mathrm{z})$

State Space Model

Time Varying

$$
\begin{aligned}
& x(k+1)=A(k) x(k)+B(k) u(k) \\
& y(k)=C(k) x(k)+D(k) u(k)
\end{aligned}
$$

Time Invariant Systems

$$
\begin{aligned}
& x(k+1)=A x(k)+B u(k) \\
& y(k)=C x(k)+D u(k)
\end{aligned}
$$

Transfer Function from State Space

Let $X(z)$ be the Z-transform of $x(k)$

$$
X(z)=\mathrm{Z}\{x(k)\}=\sum_{k=0}^{\infty} x(k) z^{-k}
$$

Let $x(0)=x_{o}$ then

$$
\mathrm{Z}\{x(k+1)\}=\sum_{k=0}^{\infty} x(k+1) z^{-k}
$$

Let $m=k+1$

$$
\begin{aligned}
\mathrm{Z}\{x(k+1)\} & =\sum_{m=1}^{\infty} x(m) z^{-(m-1)}=z \sum_{m=1}^{\infty} x(m) z^{-m} \\
& =z\left\{\sum_{m=0}^{\infty} x(m) z^{-m}-x(0)\right\} \\
& =\mathrm{ZX}(\mathrm{z})-x_{o}
\end{aligned}
$$

Applying z-transform to ${ }^{(* *)}$, gives

$$
\begin{aligned}
& z X(z) z x_{o}=A x(z)+B u(z) \\
& \quad y(z)=C x(z)+D u(z) \\
& x(z)=(z I-A)^{-1} x_{o}+(z I-A)^{-1} B u(z) \\
& y(z)=C\left[(z I-A)^{-1} x_{o}+(z I-A)^{-1} B u(z)\right]+D u(z)
\end{aligned}
$$

If $\mathrm{x}_{0}=0$, then
$\mathrm{y}(\mathrm{z})=\left(\mathrm{C}(z I-A)^{-1} B+D\right) u(z)$
$\Longrightarrow G(z)=C(z I-A)^{-1} B+D$

