State-Variable Description

Motivation

Consider a system with the transfer function

$$
H_{F}(s)=\frac{1}{s-1}
$$

Clearly the system is unstable
To stabilize it, we can precede $\mathrm{H}_{\mathrm{F}}(\mathrm{s})$ with a compensator

$$
H_{c}(s)=\frac{s-1}{s+1}
$$

The overall transfer function:

$$
H_{f}(s) H_{c}=\frac{1}{s-1} \quad \frac{s-1}{s+1}=\frac{1}{s+1}
$$

This is nice outcome, but unfortunately this technique will not work: After a while the system will burn or saturate.

To see why, let us first set up an analog computer simulation of the cascade system

We can write the equations

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
-2 \\
1
\end{array}\right] v \quad\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
x_{10} \\
x_{20}
\end{array}\right]} \\
& y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

There are general methods of solving such so-called state-space equation but it will suffice to proceed as follows:

The first equation is

$$
x_{1}=-x_{1}-2 v \quad, \quad x_{1}(0)=x_{10}
$$

Which yields

$$
x_{1}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} x_{10} 2 \mathrm{e}^{-\mathrm{t}} * v
$$

*denotes convolution

The second equation

$$
x_{2}=x_{1}+x_{2}+v
$$

has a solution

$$
\begin{aligned}
& y(\mathrm{t})=x_{2}(\mathrm{t})=\mathrm{e}^{\mathrm{t}} x_{20}+\frac{1}{2}\left(\mathrm{e}^{\mathrm{t}}-\mathrm{e}^{-\mathrm{t}}\right) x_{10}+\mathrm{e}^{-\mathrm{t}} * v \\
\Rightarrow & y(s)=x_{2}(s)=\frac{x_{20}}{s-1}+\frac{x_{10}}{(s-1)(s+1)}+\frac{v(s)}{s+1}
\end{aligned}
$$

Therefore the overall transfer function, which has to be calculated with zero initial condition is $1 /(\mathrm{s}+1)$ as expected.

Note: However, that unless the initial conditions can always be kept zero, $\mathrm{y}($.$) will grow without bond.$

So the input output description of a system is applicable only when the system is initially relaxed

State-Variable

Definition: The state of a system at time t_{0} is the amount of information at t_{0} that, together with $u_{[t 0, \infty)}$, determine uniquely the behavior of the system for all $t \geq t_{0}$

Usually x denotes state, u input, y output

Example

$$
\begin{gathered}
y(t)=\frac{1}{C} \int_{-\infty}^{t} u(\tau) d \tau=\frac{1}{C} \int_{-\infty}^{t o} u(\tau) d \tau+\frac{1}{C} \int_{t o}^{t} u(\tau) d \tau \\
=y\left(t_{o}\right)+\frac{1}{C} \int_{t o}^{t} u(\tau) d \tau
\end{gathered}
$$

where

$$
y\left(t_{o}\right)=\frac{1}{C} \int_{-\infty}^{t o} u(\tau) d \tau
$$

So if $\mathrm{y}\left(\mathrm{t}_{\mathrm{o}}\right)$ is known, the output after $\mathrm{t} \geq$ to can be uniquely determined. Hence, $\mathrm{y}\left(\mathrm{t}_{0}\right)$ regarded on the state at time t_{o}

Linearity

Definition: A system is said to be linear if for every t_{0} and any two state-input-output pairs

$$
\left.\begin{array}{l}
x_{i}\left(t_{o}\right) \\
u_{i}(t), \quad \mathrm{t} \geq \mathrm{t}_{\mathrm{o}}
\end{array}\right\} \rightarrow \mathrm{y}_{\mathrm{i}}(t), \quad \mathrm{t} \geq \mathrm{t}_{\mathrm{o}}
$$

for $i=1,2$, we have
$\left.\begin{array}{l}\alpha_{1} x_{1}\left(t_{o}\right)+\alpha_{2} x_{2}\left(t_{o}\right) \\ \alpha_{1} u_{1}(t)+\alpha_{2} u_{2}(t) \quad \mathrm{t} \geq \mathrm{t}_{\mathrm{o}}\end{array}\right\} \rightarrow \alpha_{1} y_{1}(t)+\alpha_{2} y_{2}(t), \quad \mathrm{t} \geq \mathrm{t}_{\mathrm{o}}$
for any real constants ${ }_{1}$ and ${ }_{2}$. Otherwise the system is said to be nonlinear.

- Linearity must hold not only at the output but also at all state variables and must hold for zero initial state and nonzero initial state.
- This definition is different from

$$
\mathbf{H}\left(\mathbf{1}_{1} \mathbf{u}_{1}+{ }_{2} \mathbf{u}_{2}\right)={ }_{1} \mathbf{H}\left(\mathbf{u}_{1}\right)+{ }_{2} \mathbf{H}\left(\mathbf{u}_{2}\right)
$$

Example

C and L are nonlinear

Because L C loop is in series connection with the current source, its behavior will not transmit to the output. Hence the above circuit is linear according the input-output definition while it is nonlinear according to the above definition of linearity.

- A very important property of any linear system is that the responses of the system can be decomposed into two parts

Output due to $\left\{\begin{array}{l}x\left(t_{o}\right) \\ u(t), \quad \mathrm{t} \geq \mathrm{t}_{o}\end{array}\right.$

$$
\begin{aligned}
& =\text { output due to }\left\{\begin{array}{l}
x\left(t_{o}\right) \\
u(t) \equiv 0, \quad \mathrm{t} \geq \mathrm{t}_{o}
\end{array}\right. \\
& \text { +output due to }\left\{\begin{array}{l}
x\left(t_{o}\right)=0 \\
u(t), \quad \mathrm{t} \geq \mathrm{t}_{o}
\end{array}\right.
\end{aligned}
$$

Or

Response $=$ zero-input response + zero-state response

A very broad class of systems can be modeled by

$$
\left.\begin{array}{rl}
\dot{x}_{1} & =f_{1}\left(x_{1}, \ldots, x_{n} u_{1}, \ldots, u_{p}, t\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
\dot{x}_{n} & =f_{n}\left(x_{1}, \ldots, x_{n} u_{1}, \ldots, u_{p}, t\right)
\end{array}\right] \Rightarrow \quad \begin{aligned}
& \dot{x}=f(x, u, t)
\end{aligned}
$$

together with

$$
\left.\left.\begin{array}{rl}
y_{1}= & g_{1}\left(x_{1}, \ldots, x_{n} u_{1}, \ldots, u_{p}, t\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
y_{q}= & g_{q}\left(x_{1}, \ldots, x_{n} u_{1}, \ldots, u_{p}, t\right)
\end{array}\right] \Rightarrow \underset{-}{\underset{-}{g}(x, u, t)} \begin{array}{l}
\underset{-}{y}
\end{array}\right]
$$

where

$$
x:-\left[\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right], u=\left[\begin{array}{c}
u_{1} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
u_{p}
\end{array}\right], \text { and } \underset{-}{y}=\left[\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
\cdot \\
y_{q}
\end{array}\right]
$$

We have seen an important special case, where

$$
f(x, u, t)=A(t) x+B(t) u
$$

and

$$
g(x, u, t)=C(t) x+D(t) u
$$

Fact (Existence \& uniqueness)

Under some mild conditions on $\mathrm{f}\left(.\right.$, ., .), the value of $x($.$) at \mathrm{t}_{\mathrm{o}}$ qualifies e t_{o}, i.e. knowledge of $x\left(t_{o}\right)$. And $u(\mathrm{t})$
for $\mathrm{t} \geq \mathrm{t}_{\mathrm{o}}$ gives a unique $\left\{y(t): t \geq t_{o}\right\} \&\left\{x(t): t \geq t_{o}\right\}$
Which solves the equations:

$$
x=f(x, u, t) \quad y=g(x, u, t)
$$

For the special cases:

$$
\begin{aligned}
& x=A(t) x+B(t) u \\
& y=c(t) x+D(t) u
\end{aligned}
$$

A sufficient condition for the existence of a unique solutions $x(t), y(t)$ for $t \geq t_{0}$ given $x\left(t_{0}\right)$ and $u(t), t \geq t_{0}$ is that $A($.$) be a continues function.$

We will make this assumption throughout the course.

Note: The above condition is always satisfied when
$\mathrm{A}($.$) is a constant matrix.$

