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Linear Congruence

Definition: X, =[a X, + ¢ Jmod(m)
a = multiplier

c = offset
m = modulus
X, = seed

* The maximum period is m. The problem is to
select a, c and m so that the maximum period is
achieved.

* Note that the algorithm is algebraic and
deterministic.

Mixed and Multiplicative Congruence

* Mixed Congruence (maximum period = m)
X, =[aX;+c]mod(m)

e Multiplicative Congruence (maximum period =m-1)
X;,; = [a X; ]mod(m)

* The multiplicative algorithm is somewhat faster since
the addition operation is not required. How much
faster depends upon the computer used and the
number representation.
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Desired Attributes

A long period is desired (The period should be longer
the simulation runlength.)

* Adjacent samples should be uncorrelated. Ideally the
sequence should be delta correlated for most
applications. This, of course yields a white noise
sequence.

* The desired attributes are usually application
dependent.

e Fast execution is essential.

Multiplicative LCG Full Period Design

e The generator
X, =[aX;]mod(m)

e is full period (generates all integers in [1, m—1]
before repeating) if

a) mis prime
b) a is a primitive element modulo m
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Primitive Elements

Definition:
a is a primitive element mod(m) if a1 — 1 is a multiple
of m fori=m but no smaller i.

In other words
(a=1=1) / m = k for i=m but notfori=1, 2, 3, -, m-1
where k is an integer.

Multiplicative LCG - Example

e Class Activity

— Design a multiplicative LCG, Select the values of m
and a to have a full period generator.




Multiplicative LCG - Example

e Verify that 5 is a primitive element mod(7)
Let f (i) = (5"1-1) /7.

Testf (i) fori=m=7.f(7) = 2232 (an integer)
Test f (i) fori<m=17.

f(6) =446.2857, f(5) = 89.1429
f(4)=17.7143 , f(3)=3.4286
f(2)=0.5714

Multiplicative LCG - Example

5 is a primitive element mod(7) and 7 is a prime number.
Thus, X;,; = [ 5 X;Jmod(7) is a full period generator. It

7 R+l
generates the sequence (assume X, = 3)

3(5)mod(7)=1
1(5)mod(7) =5
5(5)mod(7) =4
4(5)mod(7)=6
6(5)mod(7) =2
2(5)mod(7) =3
3(5)mod(7) = 1 (sequence repeats)

10
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Mixed LCG Design

The generator
X, =[aX;+c]mod(m)
is full period (generates all integers in [0, m—1] before
repeating) if
a) c and m are relatively prime

b) @ —1 is a multiple of every prime p which
divides m

c) a—=1is a multiple of 4 if 4 divides m

11

Mixed LCG - Example

Consider: X+1 =[ 121 X; + 567 ]mod(1000)

This is a full period generator [Bratley,1987].

Proof:

a) 567=3-3-3.3.7
1000 = 2-2-2:5:5:5
Thus ¢ and m are relatively prime.

b)  Two prime numbers (2 and 5) divide m.
a-1=120120/2=60120/5=24

c) 4divides 100 and a—-1=120is a multiple of 4
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Mixed LCG - Special Case

The generator
X, =[aX;+c]mod(m)
forc>0, n>1is full period (generates all integers in

[0, m—1] before repeating) if cisoddanda-1is a
multiple of 4 so that a =4 k +1. The proof is simple.

a) The only prime factor of mis 2. If cis odd m and
c are relatively prime.

b) 2 is the only prime factorofm.a-1=4kis a
multiple of 2.

c)a—-1=4kis amultiple of 4.

Mixed LCG - An Important Example

Consider a mixed LCG with a = ¢ = 1. Also let X,,= 0.
The algorithm is X;,; = [ X; + 1]mod(32). The sequence
generated is

0123,45,---29,30,31,0, -
This is clearly full period (period = m = 32). It clearly
fails most tests of randomness. What went wrong?

Answer: Nothing went wrong. The procedures we have
considered only show us how to develop a full period
LCG. Nothing else is guaranteed.

14
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PN Sequence Generator

N - stape shift repister

Imput |

3 4 - N-1| N

TR

E (Mod-2 additon)

Crutput
gD)=g,+5D+3, D24+ 3M—|D_1 -|-gSDN

PN Sequence Generator (N=10)

10 - stage shift repister

g(D)=1+D5+ A0

— E ' (hMod-2 addition)

l QJ'Ipm -

Note: g(I)) is a primitive polynomial .

16
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Primitive Polynomials

Where did g(D) come from?

* A PN sequence generator will have maximum period
if g(D)is primitive.

* Fortunately we have tables of primitive polynomials.

* See for example: R. E. Ziemer and R. L. Peterson, Digital
Communications and Spread Spectrum Systemes,
Macmillan, 1985, pp. 390-391.

g(D)=2011 (octal)
g(D)=010 000001 001 (binary) - 1+D3+D'°

Primitive Polynomials / 2

Definition of a primitive polynomial:

e The polynomial g(D) of degree N is a primitive
polynomial if the smallest integer k for which
g(D) divides D*+1 is k=2N-1.

Note that testing a polynomial of large degree is
a time consuming task.
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Proof Octal [1,3] is Primitive

e Claim: Octal [1,3] => 001 101 is primitive

Proof: g(D)=1+D?+D3

1+ D2 D5 DF

| Iy .D:':|1+ DT
1+ D24 DF

o N L
D2eDA DR

Py DFe IV

DPFyD5 D6

D D6y D7
DA+ D5+ 7

19

Proof Octal [1,3] is Primitive

1+ P4 DA D4

1+ D2+ DR+ D
L+ D24+ D?
DEyDAL D5
DO e D54 D6
D DFs DE
D4
DA D6 D7 TNEY

m==6

1+D2

1+DI+D3]|1+D1
1+ P4+ D7
DispiepH

m=4 D%+ DA+ DSXIOOCK

1+ D24 A8

l+Dz+D‘:':|l+D5
1+D2+ P
D2yDde s
Dy DAL 05
o
D4+ D54 DEOTY

l- D2

1+DT+E|3]1+DJ'
1+D24+ P
e

m=3 D2+ D%+ DS XOOKEX

20
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Test for Maximum Length

pntape =[0010000001]; 9 Shift regizter taps
prinitial =[0000000001); % Initial ghift register state
priregistar = prinitial;

n=0;
Kk =
whils kk ==0
data = pnregistar(1,1); 2z data symbol

feadback = rami{pnregister” pntaps’), 2);
priregizter = [feedback pnragistar(1,1:9)];
n=n+l;
if pnragistar == pninitial
kk=1;

end

and

n =z Display n

21

PN Sequence Autocorrelation Function

Rim)
1 Ll
% )
a ]
% )
kY [

3 L2 L1 |
]

53 e S e

For large L the autocorrelation function approximates an
impulse. Therefore the power spectral density approximates
a delta correlated sequence (white noise).

22
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Example of an Autocorrelation
Function

The autocorrelation is

R(A) — NA — NU

S1001011) N,=T.N;,=0.R=1
01001011 N,=3N;=4,R=-117

Consider S=1001011, the 11100101 N,=3N,=4R=-177

autocorrelation of the sequence is: 21110010 N, =3N,=4R=_1T
30111001 WN,=3N,=4R=-17T
41011100 N,=3N;=4R=-17
50101110 N,=3N,=4R=-17
60010111 WN,=3N,=4R=-17
71001011 N, =7N,=0.R=1

Autocorrelation Function

The preceding result is general.

* Note that the shift register cannot contain all
zeros but can contain all ones.

* As aresult, the PN sequence will contain 1 run of
ones of length N and 1 run of zeros of length N-1.

* As aresult there is one more 1thanOsina
sequence. The mod-2 sum of two “words” is
another word. (See previous result as an
example.) As a result N, - N, = -1 for all Az0.

24
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Table for Primitive Polynomials

Table 7.1 Short Table of Primitive Polynomials

Nlgi o gz ga]lgs [ gelogr[os | g g [gu oo mz]| s
3 1 0 1
4 1 0 0 1
L] 0 1 0|0 1
6 1 0 o]0 o0 1
i 0 ] 1 (1] 1] 0 1
B 0 1 1 1 1] 0 0 1
9 0 0 0 1 0|0 0 0 1
0] 0 0 1 o|]0|0 0 0 0 1
11| 0 1 o|jo| 0|0 0 0 0 0 1
12 1 0 0 1 0 1 0 0 0 0 0 1
13 1 0 1 1 0|0 0 0 0 0 0 0 1
14| 1 ] ol o0 1] 1 0 ) ] 1 1] ] ]
25
Example for N=10
N - stage shift register
1 2 3 4 9 10
_f[ﬂ'] Y Y
Muod-2 adder

Output
»

G=[0010000001]

»

26
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Example for N=10,
Tranter’s Book Example 7.12

o 200 400 600 BOO 1000 1200

Partial R[m]

4] 10 20 30 40 50 &0 70 B0 a0 100

. ]H]HIHH{]H”H Wll Hl WH m”ﬂ””"m” MMHWMWHNHW{”HI[

4] IO 50 BO QO 100

First 100 outputs

27

Testing Random Number Generators

* A number of procedures have been developed for
testing the randomness of a given sequence. Among
the most popular of these are the Chi-square test,
the Kolomogorov-Smirnov test, and the spectral test.

* We consider two tests: scatterplots and the Durbin-
Watson test.

28
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Scatterplots

A scatterplot is a plot of x.,, as a function of x;,
and represents an empirical measure of the

quality of the number generator.

For example, we consider two number
generators defined by:

G1l: x,,=(65x+1)mod(2048)
G2: x.,,=(1229x+1)mod(2048)

29

Scatterplots,

Tranter’s Book Example 7.5

Xi,1=(65x+1)mod(2048) %,1=(1229x+1)mod(2048)

AN

Which one
looks more
random ?

30
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The Durbin-Watson Test

The Durbin-Watson test for independence is
implemented by calculating the Durbin parameter

X)) - X(n-1)]°
D= n=2 -
X

n=1
Note the if X(n) and X(n — 1) are uncorrelated (correlation = 0),
then D would have an expected value of 2.

The value of D would be much smaller than 2 if there is strong positive correlation

and would approach 4 if there is strong negative correlation.

The Durbin-Watson Test,

Example 7.6 in Tranter’s Book

e For the two random number generators
G1l: x,,=(65x+1)mod(2048)
G2: x.,,=(1229x.+1)mod(2048)

e Applying the test in Example 7.6, we got:
— D,=1.9925 and p,= 0.0037273
— D, =1.6037 and p,= 0.19814

1/30/2014
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Random Number Generators with very
long periods

e Lewis, Goodman and Miller
X.,,=(16807x)mod(2147483647)

in which m is the Mersenne prime 231 - 1.

The Wichmann-Hill Algorithm

e Combine several number generators having
different but approximately the same periods.

X:,1=(171x,)mod(30269)
Y..1=(170y,)mod(30307)
z.,.=(172z)mod(30323)

Period is around 7.0 x 1012

X: Y. Z
= U= O A S E— mod(1
! 30269 30307 BOBZ?E @)

1/30/2014
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Marsaglia — Zaman Algorithm

* We will describe the subtract-with-borrow algorithm,
which has the form:

Z=X_,—-X_,—C_, Where all integers and | > r
{ Z, if Z>0
f —

] For maximum period (M-1), the constants b, r,
Z,+b if Z; <0 3ndsmust be chosen such that M=b"-bs+1 is

a prime with b a primitive root mod M.

0 if Z>0
1 if Z, <0 For b=232-1, r=43, and s=22, the period is:

M-1 = 1.65 x 10%1

Mapping Target pdf and PSD

EE571
Dr. Samir Alghadhban
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Goals

* We now know how to generate samples of a random variable,
U, (actually pseudo-random) that are uniformly distributed
over the range (0,1). The goal here is to map U to a target
probability density function (pdf). The technique used is
dictated by whether or not the cumulative distribution
function (cdf) is known.

pdf: Flapdx =P1:: r-dve X<z

odf: Fy(n)=["_f, (dy

Mapping U to a Desired pdf

There are a number of interesting and important cases.

Case 1. Both pdf and cdf can be written in closed form.

— Technique: Inverse transform mapping.

— Example: Exponential pdf.
Case 2. The pdf can be written in closed form but the cdf
cannot be written in closed form.

— Technique: ad-hoc methods, rejection techniques.

— Example: Gaussian pdf.
1(:Zase 3. Neither the pdf or the cdf can be written in closed
orm.

— Technique: Histogram-based method.
— Example: Experimental data

1/30/2014

19



pdf and CDF both Known in Closed
Form

Since
U=F(x), X=FU) CDE

The algorithm for

F,
generating X from a uniform |7 pe—
U, —y

random variable U,
with pdf f,(x) is: |
1. FormU 0 %

2. SetF(x)=U U=Pr X5 =Fy(x)=[" fy(0dx
3. Solve for X
4., Return X

Example 1 - Exponential RV

Problem: Map a uniform (0,1) RV, denoted U, to the exponential

pdf:
Fy (x)=Fexp(—fixun(x)

Solution: the CDFis

F ()=, fexp(~Hy)dy=—exp(8y) |

41
F(x)=1-exp(-fir)=u
In terms of random variables we write

axp{-fX)=1-U=U

Note that the random variables U and 1- U are equivalent

40

1/30/2014
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Example 1 - Exponential RV

exp(-fX)=1-U =07
To develop the algonthm solve for X
—AX =)

I=—?1!.l'n.{[.?}
Peendocode:

1. Generate U/
z.xhﬁhwu

3. Femm X

41

Example 1 - MATLAB Demo

Problem: Generate a set of samples having the pdf
£ (x)y=fexp(—fixjux)

Let:
1. A=3
2_Number of histopram bins = 20
3. Number of samples generated = 50 and 2000

42

1/30/2014
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Demo Program for Example 1

olear all % be safe

n = input{'Enter mumber of points > ");

b= 3; % set pdf parameter

u = rand{l,n}; % generate U

¥ exp = —logiul/b; % transformatiom
[B_samp,x] = hist(y_exp,20}; % get histogram parameters
bar(x,N_samp,1) % plot histogram

paus= % pause for oomparison

¥ = brexp{-3*x); % galoulate pdf

del x = x{3)-:(2); % determine bin width

p_hist = B samp/n/del x; % probability from histogram
plotix,y,x,p hist "X"} % compare

Example 1 Results (N=50 points)

Hamber of S amglen

Imdapindiad Varahis -

44
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Example 1 Results (N=50 points)

Example 1 Results (N=2000 points)

1/30/2014
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Example 1 Results (N=2000 points)

Brobubiliy Desty
- i

47

Group Exercise
Example 2 - Rayleigh pdf

The tarpet pdf is )
f4ln=Zzexg

2
el

Find the CDF of the Rayleigh RV

The cdf is L
-
et T £
The algorithm is defined by

B _p ]
1-eq1-FJ U o “#_"Fj 1-U=U

48
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Example 2 - Rayleigh pdf

We sclve the following for -
(B |_i_p=
wf fofrw
B
27 1Y)
This is

This is often referred to as the Box-Muller Tansformation
and is a fundamental step in the peneration of Ganssian

random variables.

Example 2 — MATLAB Problem

olear all

wvarf = 3;

w = rand{1l n);

¥_exp = sgrt(-2*wvarR*log{ul)l;
[N _samp,r] = hist{y exp,20);
bar{r ¥ samp 1)}

pause

terml = r.*rfZ/varR;

ray = {r/warR).*exp{-terml);
del © = ©(3)-x{2);

p_hist = H_samp/nfdel r;
plot{r, ray, c p hist 'X'}

% be safe
n = input( Enter number of poimts > ');

£
£Y
£l
£
£Y

£

CC R

set pdf parameter
genarate T
transformation

get histogram parameters
plot histogram

pause for comparison

exponent

Rayleigh pdf

determine bin width
probability from histogram
compars results

50
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Example 2 Results (N=3000 points)

Example 2 Results (N=3000 points)

nzs

1/30/2014
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Generation of Gaussian RV
Box-Muller Method

Theorem: Orthogonal projections of a Rayleigh random variable

produce two independent Gaussian random variables. In other
words, if R is Rayleigh, X and Y are Gaussian and independent
where
X=Rcos# and ¥=Rsingd
and g is uniformly dismibuted in the range

0=8<2x

Independent Gaussian pdfs

Proof: The target pdfs are

-fr{xj:'::mlgﬂl:{'z%l. R T
R

If X and Y are statistically independent, the joint pdf is given by

Felzo=1 0t 0= Lyemd 20|

54
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Gaussian to Rayleigh Transformation

fxrtx.}i=frtx}fr(}')=mﬂp|—%ﬁ

x=rcos and y=rainéd
we have

%:cmﬂ‘, %:—rsim?, %:M and %:Fﬂﬁﬂ'
This gives the Jacobian
cosf —r sl

Hxyr = =r{cos? §+sint y=r
sméd roosd

55

Gaussian to Rayleigh Transformation

f = Fy Dy )= Lemp -

LT+
The target joint pdf is
oo )= 1o (5.3) Fx.yr 8) ——911:1 &z_

Since _l.--nlrl!-'
24 yi=rt

we have
F ol B)= g~ i)
The unit step is required to make the joint pdf is 0 for negative

values of r.

56
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Marginal pdf s

Fralr = —mﬂl 1.m

The marginal pdfs are

Fln=[5 L ' ,w- _.,551 |;" ag

foln= ?aq m:r:u (Rayleizh - This proves the thecrem )
faﬂ=!5ﬁ-ﬁl’|"a—fr}“‘f=-§f.?m’| |l

folfy=—lexpg-T=_ o T =—L{0-1j=,L. (uniform)

=il

57

Box-Muller Method

The psendocode is as follows:

1. Generate U, in (0,1)
2. Generate U, in (0.1)
3. Set variance
4. R3Oy
5. fe2al,

6

7

. X+ Reoséd
. ¥+ Rsing

58
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Example 3 MATLAB Code

ol=ar all

n = input('Enter nusber of podints

vardY = 3;

ul = randi{l,n};

w2 = randi{l,mn};

r = sgrt(-2*varXi*logiul));
theta = 24+pi*ul;
r.*oos(theta);
r.*sin{theta);

N_gaus
¥_gaus

1 b= safe
= t;

set target warianoe
generate T1
generate T2
generate T
generate theta
generate X
generate T

e aR e eE e aR

[H_samp,x_hist] = hist(x_gaus,20); % get parameters

bar{x hist,§ samp,l)

pause

% plot histogram

% pause for comparisom

59

terml
termz
g = temmdexp{-—terml )
del x = x_hist{3})-x_hist(2);
p hist = N samp/n/del x;
plotix hist,gx,x hist,p hist, X"}

% The
rho =

Example 3 MATLAB Code

x_hist.*x_hist/2/varky;
1/ {sgre{2*pi*variY));

mean_xX = mEanix_gaus)
mEAN_F S mEaniy gaus)
Var X = 0OV(X_gaus)
Var ¥ = ooviy gaus)
next statement deterines the
mean(X _gaus.*y gaus)istdix gaus)Sstd{y gaus)

C ]

EXpoTETt
maltiplier
Gaussian pdf
determine bin width
histogram points
gompare results

mean of X

mean of ¥

varianoe of X

varianoe of ¥
porrelation ocoeffioient

60
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Example 3 (N=6000)

—_— upt

—
§ B 4 B &

Frbubilry iy
8 B

E B # &
3

2 2 - a ] 2
Eviependeat Vartabla - x Indepesden Varishle - 1

mean_x = 0.0059
mean_y = -0.0023
var_x=31511
varL_y=29252

tho =-00149

Generation of Gaussian RV
Sum-of-K Method

* Suppose we generate K independent values of a uniform

random variable U, add them together and multiply the result
by a constant B. As K becomes large, the result, N, becomes
Gaussian.

E
e 1
N= 2 UI.—E

The mean is:

- r-1 _p% 1_
E{N}_Eﬂg U~} =B} Ev, -} =0

1/30/2014
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Sum-of-K Method

The variance is:
Since the uniform variants are independence, the variance of N

is: K82
2 2 2
oy =KBogf, =——
N U 12

For a given value of K the value of B can be adjusted to obtain
any desired variance.

Effect of Tail Truncation

¢ Asignificant problem of sum-of-K method is tail truncation of
the Gaussian pdf.

Low receiver In digital communications link

input SNR: simulations the tails of the pdf

are most important.

When the SNR becomes sufficiently
High, the conditional pdfs no longei
overlap and the error becomes

- k -
h exactly zero.
High receiver
input SNR:
T v
k

v

64
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Effect of Tail Truncation on BER

Iug__ | Cormect
= w Result
" CLT Result
B s Eh;'.\],_.l,i.n dB " ’
Observations

* For any given SNR one can find a value of K which makes
this effect negligible. However, since K calls to a uniform
random number generator are required for each Gaussian
variate, the process is too slow to be of practical use.

* These techniques are useful, however, when one requires
a random variable that is approximately Gaussian in the
neighborhood of the mean.

* An advantage of the CLT method is that, for large K, the
random variable N is approximately Gaussian, at least in
the neighborhood of the mean, even if the constituent
variables U fail to be uniform.

33



Histogram-based Method

Problem: Suppose we have a set of experimental data and
wish to develop a noise generator that generates numbers

with the same pdf as the experimental data. The first step is

to approximate the pdf of the experimental data by the

histogram.

e ‘P']_
i—

oy
LN
Py

Xig Xy & v Ay

gy et

Histogram-based Method

o & B & Y2 &y & Ay Ay

_lg.  x_<xsxy, i=123:-N
Tx™=16]  otietwise

% foex -
P= LH fydx, =12, N

1/30/2014
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Histogram-based Method

Yo X B X Tig Gy & Yy Xy
The CDF at the point X = xis
i-1 I
F (x)=%P.+[" ¢.dx=F. (x—x
X(r) ng _;+Lg__lcx 1—1+C1(x rl—].)
With Fy(x) = U we have
Fp(X)=U=F_ +c(X-x_))

Histogram-based Method

Solving
FyX)=U=F 1 +q(X-xy)
gives Fy +
X =Ii—1+%.|‘U_FI-1] F, +
The algorithm is
1. Generate U
2_Find i from Fit .
‘F:'—l{U £ FL F,- |

1 i
3. X “J‘i_l"'FilU_Fx-l]

4_Retum X

70
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Generating Correlated Gaussian
Random Process

Establishing an Arbitrary PSD and
Autocorrelation Function

Input: x() Output: y(t)

pdf: Gaussian Filter pdf: Gaussian
B — 1 —_—

PSD= K (uncorrelated) H(f)= ?Sy(f) PSD= S,(f)

From Linear System Theory:

S, (f)=|H(H)|"S,(f)

/2 /2
Example: Jakes Filter Model

Dr Samir 72
Alahadhhan

1/30/2014
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(uncorrelated)

Establishing a pdf and a PSD

z(n)

Input: x(n

putx yin) df: shaped

| . pdf: shaped as

f. i
pdf. Gaussian . . pdf: Gaussian pdf desired

——| Linear Filter ™ conversion

PSD= Whi

S ite PSD= Correlated| PSD= shaped as

desired

Establishing a Given Correlation Coefficient

e Let XandY be two uncorrelated Gaussian random variables with
. 2
mean zero and variance o

X ~N(0,0%) and Y ~ N(0,0%)
Then 7 =pX +4/1-p°Y
Willbe: 7 ~, N(O,O‘2)

and the correlation coefficient between X and Z is

P, =P

Dr Samir Alghadhban 74
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Establishing a given correlation coefficient:
proof

The mean:

E[Z]=pE[X]+1-p*E[Y]=0

The variance:
2
o, =E[Z’]= E“pX~|— l—sz} }
= E[ X4 2pJ1 = p E[XY]+(1—p")E[Y’]
since E[XY]=E[X]E[Y]=0
o_; — p20_2 ‘I‘ (1_102)0-2 — 0_2

Dr Samir Alghadhban 75

Cont.

The Covariance:

E[XZ]= E{X[pX+ 1—p2Y]}

= pE[X*T+1-p* EIXY]_|

= pE[X*]= po’
The Correlation Coefficient:
E[XZ] po’
Pz = ===
O'XO'Z g

76
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Spatial Correlation: Correlated MIMO Channel

Model

Hhe 0 h oL

H(t) = : - : T
h,.@® - h,®

Multiple Input Multiple Output (MIMO

Dr Samir Alghadhban

) Channels

77

Correlated MIMO Chan

¢ the spatial covariance matrix of the
MIMO channel is

R o = E{vec(H)-vec(H)"}=R_ I R,

MIMO
Rymo isan M M, xM M spatial covariance matrix
vec(H) is the vector operator that stacks the columns of the M ; xM
matrix (H) into an M ;M x1 column vector .
H isthe M xM; MIMO channel matrix.

H" the superscript (") denotes the complex conjugate transpose,
known as the Hermitian conjugate.

E{0} isthe expectation operator.

® is the Kronecker product. The Kronecker A Bpxu =

product between two matrices is defined as:

nel Model

Where Rg and R; are
normalized spatial covariance
matrices of the transmitter
and receiver elements

ALDB AL2B - ALnB |
AZDB A@2B - A@2n)B

A(n';,l)B A(n{,Z)B - A(m.,n)B By
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* Since the covariance matrix is nonnegative definite, it can be
factorized using Cholesky decomposition

H
RT = LT . LT ,where L is a lower triangular matrix
_ | H
R, =L".L

It is shown that the spatially correlated MIMO channel matrix
can be modeled as:

R

79

Correlated Rayleigh Fading Channel
Simulator Using FIR Filters

80
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Qutline

Motivation

Rayleigh Channel Model
Jakes’ Spectrum

Design procedure
Examples

81

Rayleigh Channel Model

X(t) (3 ) y(t)

®

a(t) n(t)

y(t) = er(t)x(t) +n(t)

Where, a(t) =, (t) + ja, (t)

Zero mean complex Gaussian Random Process

82
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Rayleigh Channel Model; Cont.

Envelope ©=|a®)]=ya, +ay’

I.2
20"

Phase @ =tan"(a,/a,)

p(r)=%eXp(— ), r>0
O

P(O) = > [u(@+7)-u(O - )]
T

83

Mobile Channel Model, Jakes’

Spectrum
V 2
fo =—f; e e
C S,(f)= z;ﬁDm
0 otherwise
0]
2
Ry (1) = 03, (27, 7)
Jo(X)=i(—1)2(X_n)z
n=0 2"nl
Lsueusa | aotonalfiequencies )
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Simulator

WGN | FIR

a(t) =a, (1) + jaqy(t)

WGN | FIR Q

85

Power spectral Density

S,y (F) =S, (FH(F)

For the WGRV, S, (f)=c’ Forall 7. Let 5”be one
2

S, (f)=|H(f)|

Then, if

H(f)=S,(f) =3, (f)=5,(f)

86
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Design Measures

 For a given Doppler Frequency £, Divide it by the

system Symbol rate 7. The term 7,7 is known as the
fade rate and it is our main target. Each I and Q
components should have this fade rate

The envelope should be Rayleigh distributed and the
phase should be uniformly distributed from [-7,7]

The mean of each | and Q component should be zero
and the power should be normalized to one.

87

Based on Window design

Find the fade rate 7,7 et

Take enough sample from s,()- anDTs\/l—[TTS]
h:firZ(N,f,sqrt(Sf),Window) 0, otherwise

Since yn] =ZN:h[k]x[n—k]

E[y[n]] = ZN:h[k]E[X[n —k]I=0
var[y[n]] = ZN: h?[k]var[x[n—k]] = ZN: h’[k]=K

88

1/30/2014

44



Example; 7,7.=0.01

» Assume a vehicle speed of 60 mi/h, a carrier

frequency =900 MHz and a symbol rate of
8000 symbols/s. This results in a 7,7.=0.01.

89

Rectangular Window, N=600

PDF Autocorrelation

* Qutput Theoretical

0.15

50 100 150 200 250 300 350 400 450
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0.07,

Examplel,Cont.

__Unit pulse Response

Frequency Response

. Va¥ —~ . . . . . .
0 0005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

91

Input vs. Output

Autocorrelation
Input |Output | ..
P P  Output
Mean  |0.0024 |0.0144 ﬁ Input
Variance |0.9477 {0.9957 B ap

hRATAS

0.4 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
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U

v.25

0.2

0.1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency Sampling

nit pulse Response, N=2000

0.4

1

0.8

0.6

0.4

0.2

0.2 J

Autocorrelation
—— Qutput]

—— Theoretical

100 200 300 400 500 600 700 800 900 1000
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