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Why are Random Processes
important?

Random Variables and Processes let us talk about
quantities and signals which are unknown in
advance:

The data sent through a communication system is
modeled as random

The noise, interference, and fading introduced by
the channel can all be modeled as random
processes

Even the measure of performance (Probability of
Bit Error) is expressed in terms of a probability.

Random Events

When we conduct a random experiment, we can
use set notation to describe possible outcomes.

Example: Roll a six-sided die.

Possible Outcomes: 5={1,2,3,4,5,6}
An event is any subset of possible outcomes:
A={1,2}
The complementary event: A=S—A={34,5,6}
The set of all outcomes is the certain event: S
The null event: ¢
Transmitting a data bit is also an experiment
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Probability

* The probability P(A) is a number which measures
the likelihood of the event A.

Axioms of Probability:

* No event has probability less than zero: P(A)>0

e Also P(A)<1 and P(A)=1C A=S

e Let A and B be two events such that: ALl B=¢
Then: P(AL B)=P(A)+P(B)

* All other laws of probability follow from these
axioms

Relationships Between Random Events

« Joint Probability: P(A,B)=P(AL B)
— Probability that both Aand B occurP AB
 Conditional Probability: P(A|B) = é(é))

— Probability that A will occur given that B has occurred

 Statistical Independence:
— Events A and B are statistically independent if:
P(A,B)=P(A)-P(B)
— If Aand B are independent then:

P(A|B)=P(A) and P(B|A) = P(B)
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Random Variables

e Arandom variable X(s) is a real-valued function of
the underlying event space: s[S
e Arandom variable may be:

— Discrete-valued: range is finite (e.g. {0,1}) or countably
infinite ( e.g., {1,2,3,...})

— Continuous-valued - range is uncountably infinite (e.g.
) [
* Arandom variable may be described by:
— Aname: X
— It'srange: X[ [
— A description of its distribution

Probability Distribution Function (PDF)

¢ Also called Cuomulative Distibution Function (CDF)
e Definition: Fx(x)=F(x)=P(X<x)

¢ Properties:
F(x) is monotonically nondecreasing
F—e)=0
Flw) =1
P(a <X <b)= F(b)— F(a)
¢ While the PDF completely defines the distnbution of a
random varniable, we will usually work with the pdf or
pmf
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Probability Density Function (pdf)

e Defn: pX{xj=d—F§t{x} n:p{xj=d—ﬁx}
» Interpretations:

+ pdf measures how fast PDF is increasing or how likely a
random variable is to lie at a particular valne

» Properties:

p(x)=0

Tplxax=1

P{a«::.l'iib}:j?p{x}ldx

Expected Values

¢ Expected values are a shorthand way of describing a
random variable

¢ The most important examples are:
eMean: E(X)=my= [xp(x)dx

—o

& Variance: E[[X—mx]z) = “I —mx}zp(x}dx
e The expectation operator works with any function:

Elg(x)]= [g(x)plx)dx

10
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Chebyshev Inequality

e [t ¥
be a random vanable with mean: ™
and vanance: '-'ngc

o Thenforany 8 . PX-mz8)=—F

e The size of the vanance determines how a random
vanable 1s to lie close to 1t's mean value

11

Chernoff Bound

Let ¥ be a random variable
Then, for any value of +>0 and §>0:
pfr 25]< 26T 0))
Very useful for upper bounding low probability events on the
tails of distributions

Frample: ey,”ﬂ =Pr[f zd]= _Efb

pr(y)= i

12
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Example #1: Uniform pdf

10, 0<x<=10
. p(r)={ 0 else
p(x) 4
110
. X
0 10

Example #1 (Find the mean and the

variance)
o Mean: = 10 4 . 1o
my= [x-p(x)dx= jx-l—dx: 0 =5
— 0 =

# Varnance:
= 10 _
oF = J(x-5) px)e= | (x5 v =2
= 0
¢ Probability Calculation:
9

o
Pl6=x<=9)=|p(x)dx :fla’_r:t]j
5 61{}

14

1/30/2014



Example #2: Gaussian pdf

(%

)

{:r—ml.:l2

2oy

- \
pix)= 1.1_,_21120% e : / \Ik

C]

¢ A Gaussian random vaniable 1s completely determuned

by its mean and vanance

15

A Communication System with
Gaussian Noise

S e {ta} R=5+N
<
I ( ) I 3
Transmitter Receiver R = 07

N ~N(0.63)

¢ The probability that the receiver “]- make an error 1s:
(x+a

= 1 ]
P(R=0S=—-a)=| e 20n =§{i]
0+/2mo;, O

16
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The Q-function

o The Q-function 1s a standard form for expressing error
probalities wﬂhnut a closed form:

@(x}l-jﬁ_ Py - zﬁf[ﬂ]
. anerical Calculation of Q-function:
—xz._ —_ H_ e T H—
o)=L f’[l__ JEO JUNES B e 1}]

H
x x x

2
g X /‘1_. forx=3

-1

x-/2T

17

The Q-function and its Approximation

{Fercitrn snd Analytical & ppescmaison

18
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Example #3 - Rayleigh pdf

e Let R- X713

where X1 gnd X2 are Gaussian with mean 0 and
vanance
¢ Then R 1s a Rayleigh random variable with pdf

2 2
r /2

pr() =L/
4]

» Rayleigh pdf's are frequently used to model fading
when no line of site signal 15 present

19

Rayleigh pdf

Rayicigh pal

20
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Probability Mass Functions (pmf)

e A discrete random variable can be described apdfif
we allow mmpulse functions
o We usually use probability mass functions (pmf):
plx)= P(X =)
+ Properties are analogous to pdf
p(x)=0
Trlx)=1
X

e PlasX=h)= Ep{x]

X=da

21

Example #1: Binary Distribution

2, x=0

P{I}={u2__ x=1
¢ This is frequently used to model binary data
¢ Meann Mx=2Xx-p(x)=0-12+1-12=1/2
s Varance: ¥

LS (xmm ) p () = (22 Y2 (122 =4
e If 1 andX» are independent binary random variables.
then Pxyx; (0.0)=py(0) Py, (0)=12-12=1/4

22
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Example #2: Binomial Distribution

H
F=3X; -
o Let fE'l I where {Xi.i=1....n} are mdependent

bmary RVs with- 1-p, x=0
px¥=1 7

+ Then py(y)=( 1 pra-ppr (1)

¢ Meann "x=1'P

¢ Vanance: 5% =n-p-(1-p)

23

Example #2 (continued)

» Suppose that we transmit a 31 bit sequence with error
correction capable of correcting up to 3 errors.
o If the probability of a bit error 15 p=0.001, what 1s the
probability that the codeword 1s received 1n error?
P(codeword error ) = 1— P(correct codeword)

3 (31 ;i - _
-1-3 [ !, ](0999)31 (000D =3x107%
i=0
¢ If no error correction 1s used. the error probability 1s:
1-(1-0001*1 = 0.0305

24
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Central Limit Theorem

vanables “?;Il;th identical pdfs
o Lett F=73X;
i=l
® Then as N — = _ the distribution of will tend towards
a Gaussian distnbution
¢ In practice, N=10 15 usually enough to see this effect
o Thermal noise results from the random movement of

many electrons - 1t 1s well modeled by a Gaussian
distribution

25

Example of Central Limit Theorem:

26
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Random Processes

e A random vanable has a single value. However, actual
signals change with time_

¢ Random vanables model unknown events.

¢ Random processes model unknown signals.

¢ A random process 1s just a collection of random
vaniables.

o If Xy?) 1s a random process then Xy1), X71.5),and
X(37.5) are all random vanables for any specific tume ¢

27

Terminology Describing Random
Processes

» A stationary random process has statistical properties
which do not change at all with time (1.e., all jomnt pdfs
do not change)

o A wide sense stationary (WSS) process has a mean and
autocorrelation function which do not change with
time (thas 1s usually sufficient)

o A random process 1s ergodic 1f the ime average
always converges to the statistical average.

o Unless specified, we will assume that all random
processes are WSS and ergodic.

28
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Description of Random Processes

¢ Knowing the pdf of indridual samples of the random
process 15 not sufficient. We also need to know how
how mdirvidual samples are related to each other.
¢ Two tools are available to describe thus relationshap:
+ Autocorrelation function
# Power spectral density function

29

Autocorrelation

» Autocorrelation measures how a random process
changes with time.

o Intuitively, Xi1) and X71.I) will be more strongly
related than X77) and X7100000) (although 1t 15
possible to construct counterexamples). The
autocorrelation function quantifies thas.

¢ Defn (for WSS random processes):

0x(t)= E[X()X(t +7)]

¢ Note that Power = x(0)
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Power Spectral Density

e ©(f) tells us how much power is at each frequency
e Wiener-Khinchine Theorem: @ (f)= F{#(1)}
Power spectral density and autocorrelation are a
Founer Transform pair!

¢ Properties of Power Spectral Density:
o(r)20

O(f)=2(-f)

o Power = |O(7)df

Gaussian Random Processes

Gaussian Random Processes have several special
properties:

¢ If a Gaussian random process 1s wide-sense stationary,
then 1t 15 also stationary.

¢ Any sample point from a Gaussian random process 1s a
(Gaussian random vanable

¢ If the input to a linear system 1s a Gaussian random
process, then the output 15 also a Gaussian random
process

1/30/2014
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Linear Systems

e Input: x(f)
¢ Impulse Response: A(f)
e Output: ¥()

o 0 o

Computing the Output of Linear
Systems

¢ Determimistic Signals:
# Time Domain:  y(t) = h(t)=x(f)
# Frequency Domain:  ¥(f) = F{p(t)}= X(f)H(f)
» For a random process, we can still relate the statistical
properties of the imnput and output signal
¢ Time Domain:  §y(T) =¢ x(T)=h({T)*h(- 1)

¢ Frequency Domain:  @y(f) = 'I’X(f}'l-H{f}F

1/30/2014
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Gaussian Process

Suppose that we observe a random process X(t) for
an interval that starts at time t=0 and lasts until t=T.

Suppose also that we weight the random process
X(t) by some function g(t) and then integrate the
product g(t)X(t) over this observation interval

Thereby obtaining a random variable Y defined by:

Y = TEg(t)X(t)dt

Y is a linear function ‘of X(t)

Gaussian Process

If the mean-square value of the random
variable Y is finite and if the random variable Y
is @ Gaussian-distributed random variable for
every g(t) in this class of functions,

Then the process X(t) is a Gaussian process

In other words, the process X(t) is Gaussian
process if every linear function of X(t) is a
Gaussian random Q/ariable.
For example, Y =[] axX

i=1
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Gaussian Process

e The random variable Y has a Gaussian
distribution if its pdf is:

- 1 _f}" - py)

Where p, is the mean and o2, is the variance

e The normalized Gaussian random variable Y has a zero
mean (K, =0) and unit variance (02, =1) :

o1 -y
f?l:}':l mEIP( 1)

Normalized Gaussian distribution

Sy
06—
. 1 ¥
= - 0.4
f?l:}':l m EIP‘( 1)
0.2
| | |
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Gaussian Process

e A Gaussian process has two main virtues:

1- the Gaussian process has many properties
that make analytic results possible

2- By experimental verifications, physical
phenomena usually follow a Gaussian model.

Central Limit Theorem

* The central limit theorem provides the mathematical
justification for using a Gaussian process as a model for
a large number of different physical phenomena in
which the observed random variable, at a particular
instant of time. is the result of a large number of
individual random events.

* To formulate this important theorem, let X.,i=1, 2, ...
, N be a set of random variables that satisfies the
following requirements:

1. The X; are statistically independent.

2. The X, have the same probability distribution with
mean W, and variance o2, 0

20



Central Limit Theorem

* The X; so described are said to constitute a set of

independently and identically distributed (i.i.d.)
random variables.

e Let these random variables be normalized as
follows:

1 .
Yy =— (X — ux) i=1,2,....N
Ty
Sothat we have EIY¥il =0 And var[¥]] = 1
1 N
Define the new random variable Vi = \a’_ﬁ rzl ¥i

41

Central Limit Theorem

e The central limit theorem states that the
probability distribution of V| approaches a
normalized Gaussian distribution N(0, 1) in the
limit as the number of random variables N
approaches infinity.
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Properties of a Gaussian Process

Property 1:

* |f a Gaussian process X(t) is applied to a stable
linear filter, then the random process Y(t)
developed at the output of the filet is also
Gaussian.

Properties of a Gaussian Process

Property 2:

* Consider the set of random variables or samples X(t,), X(t,), . .
., X(t,), obtained by observing a random process X(t) at times
t, t,, ..., t,. If the process X(t) is Gaussian, then this set of
random variables is jointly Gaussian for any n, with their n-
fold joint probability density function being completely
determined by specifying

1- the set of means  px. = EX(5)l,  i=1,2,..., n

2- and the set of covariance functions
Cxlty, 8} = E[(X{te) — g MX(8) — B ki=1,2,..., n

44

22



Multivariate Gaussian distribution

¢ Let the n-by-1 vector X denote the set of random variables
X(ty), . .., X(t,) derived from the Gaussian process X(t) by
samplingitattimest, ..., t,. Let x denote a value of X.
According to Property 2, the random vector X has a
multivariate Gaussian distribution defined in matrix form as:

1 1 i
fX-::.J.....xc:;ﬂ'.-'\-'Jw crs Xz) = W &XP('E {x = w2 x = l-l])

Where the superscript T denotes transposition and
B = mean vector
= [ty My ooy ]’
¥ = covariance matrix
= {Cxlty,y tI)Eim1
%! = inverse of covariance matrix

A = determinant of covariance matrix X e

Properties of a Gaussian Process

Property 3

* |f a Gaussian process is stationary, then the process is also
strictly stationary.

Property 4
If the random variable X(t,), . . ., X(t,) obtained by sampling a
Gaussian process X(t) at times t, t,, ..., t,, are uncorrelated, that
is,

E[{Xite) = pocu MX (G = pagn)] = 0, i+ k

Then these random variables are statistically independent.

46
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Properties of a Gaussian Process

Property 4 (continue)

That means that the covariance matrix of X(t) is diagonal:
o (o]
r=| o
O ol

of = E[(X(td - EIX(t)IPl, i=1,2,...,n

Where

47

Properties of a Gaussian Process

Property 4 (continue)

Therefore, the multivariate Gaussian distribution will be:

fxlx) = 11 Flx.)

48
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Properties of a Gaussian Process

Property 4 (continue)

In words, if the Gaussian random variables X(t), . . .,
X(t,) are uncorrelated., then they are statistically
independent, which, in turn, means that the joint
probability density function of this set of random
variables can be expressed as the product of the
probability density functions of the individual random
variables in the set.

49

Noise

What do we mean by noise? From where does it come from?

¢ The term noise is used customarily to designate unwanted signals that
tend to disturb the transmission and processing of signals in
communication systems and over which we have incomplete control.

¢ There are many potential sources of noise in a communication system.

— external to the system (e.g., atmospheric noise, galactic noise, man-made
noise)

— internal to the system, such as the noise that arises from spontaneous
fluctuations of current or voltage in electrical circuits. This type of noise
represents a basic limitation on the transmission or detection of signals in
communication systems involving the use of electronic devices.

¢ The two most common examples of spontaneous fluctuations in electrical
circuits are shot noise anti thermal noise.

¢ White noise is an idealized form of noise used in communication systems
analysis.

50
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Shot Noise

¢ Shot noise arises in electronic devices such as diodes and
transistors because of the discrete nature of current flow in
these devices.

* For example, in a photodetector circuit a current pulse is
generated every time an electron is emitted by the cathode
due to incident fight from a source of constant intensity.

* The electrons are naturally emitted at random times
denoted by 7, where -eo<k<oo

51

Shot Noise

* Thus, the total current flowing through the photo-
detector may be modeled as an infinite sum of current pulses
as:

X@t)= 2 b(t - )

= —w=

Where h(t- t,) is the current pulse generated at time T,

52
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Shot Noise

e The number of electrons, N(t), emitted in the time interval [0, t]
constitutes a discrete stochastic process, the value of which
increases by one each time an electron is emitted.

Nin the mean value of the number of electrons
6 — , v, emitted between times tand t + t, is:

E[¥] = Aty

The parameter A is a constant called the rate
of the process. The total number of electrons
emitted in the interval [t, t + t,] is:

v= N[t + ) — N[1)

Which follows a Poisson distribution with
s a mean value equal to

Shot Noise

The probability that k electrons are emitted in the interval [t, t +
t,] is defined by:

3
- M—tﬂ} E_MEI

Ply=1k) =3

k=0,1,...

54
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Thermal Noise

Thermal noise is the name given to the electrical noise arising from
the random motion of electrons in a conductor.

The mean-square value of the thermal noise voltage V;, appearing
across the terminals of a resistor, measured in a bandwidth of Af
Hertz, is given by:

E[VZ,] = 4kTR Af volts? <— Noise Power

where k is Boltzmann's constant equal to 1.38 X 10-2 joules per degree Kelvin
T is the absolute temperature in degrees Kelvin
and R is the resistance in ohms

55

White Noise

¢ The noise analysis of communication systems is customarily
based on an idealized form of noise called white noise, the
power spectral density of which is independent of the
operating frequency.

* The adjective white is used in the sense that white light
contains equal amounts of all frequencies within the visible
band of electromagnetic radiation.

* We express the power spectral density of white noise, with a

sample function denoted by w(t), as »

= No
Swlf) = 5 5,

1/30/2014
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White Noise

* The dimensions of N, are in watts per Hertz.
* The parameter N, is usually referenced to the input stage of the
receiver of a communication system. It may be expressed as:
No = KT,
where k is Boltzmann's constant and T, is the equivalent noise
temperature of the receiver
¢ The equivalent noise temperature of a system is defined as

the temperature at which a noisy resistor has to be maintained such
that, by connecting the resistor to the input of a noiseless version of the
system, it produces the same available noise power at the output of
the system as that produced by all the sources of noise in the actual
system

57

White Noise

Since the autocorrelation function is the inverse Fourier transform
of the power spectral density, it follows that for white noise:

Ryelm)

NT" Alr}
z

Strictly speaking, white noise has infinite average power and, as such, it is not
physically realizable. Nevertheless, white noise has simple mathematical properties
which make it useful in statistical system analysis.

58
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