Chapter 2: The Random Variable

The outcome of a random experiment need not be a number, for example tossing a coin or selecting a color ball from a box.

However we are usually interested not in the outcome itself, but rather in some measurement or numerical attribute of the outcome.

Examples

In tossing a coin we may be interested in the total number of heads and not in the specific order in which heads and tails

occur. In selecting a student name from an urn (box) we may be interested in the weight of the student.

In each of these examples, a numerical value is assigned to the outcome.

We will define two more distributions of the random variable which will help us finally to calculate probability. **Distribution Function** We define the *cumulative probability distribution function* $F_X(x) = P\{X \le x\}$ where , $F_X(x)$ Small letter indicating parameter $F_X(x)$ Capital letter indicating the random variable In our flipping the coin 3 times and counting the number of heads $F_X(2) = P\{X \le 2\}$ $F_X(2) = P\{X \le 2\} = P\{X=0\} + P\{X=1\} + P\{X=2\}$ $= \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$

Example: Let
$$X = \{0,1,2,3\}$$
 with $P(X = 0) = P(X = 3) = \frac{1}{8}$
 $P(X = 1) = P(X = 2) = \frac{3}{8}$
 $F_X(0) = P(X \le 0) = \frac{1}{8}$
 $F_X(1) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{8} + \frac{3}{8} = \frac{1}{2}$
 $F_X(2) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$
 $F_X(3) = P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$

Example: Let
$$X = \{0, 1, 2, 3\}$$
 with $P(X = 0) = P(X = 3) = \frac{1}{8}$
 $P(X = 1) = P(X = 2) = \frac{3}{8}$
 $F_X(0) = P(X \le 0) = \frac{1}{8}$
 $F_X(1) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{8} + \frac{3}{8} = \frac{1}{2}$
 $F_X(2) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$
 $F_X(3) = P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$

Density Function

- We define the derivative of the distribution function $F_X(x)$ as the probability density function $f_X(x)$.

$$f_X(x) = \frac{dF_X(x)}{dx}$$

- We call $f_X(x)$ the density function of the R.V X
- In our discrete R.V since

$$F_{X}(x) = \sum_{i=1}^{N} P(X = x_{i})u(x - x_{i})$$

$$f_{X}(x) = \frac{d}{dx} \left(\sum_{i=1}^{N} P(X = x_{i})u(x - x_{i}) \right) = \sum_{i=1}^{N} P(X = x_{i}) \frac{d}{dx} u(x - x_{i})$$

$$= \sum_{i=1}^{N} P(X = x_{i})\delta(x - x_{i})$$

$$f_{X}(x) = \sum_{i=1}^{N} P(x_{i})\delta(x - x_{i})$$
14

$$\begin{aligned} & (f_{n}) = \int_{-\infty}^{x} f_{n}(\xi) d\xi \\ & (f_{n$$

The Gaussian density is the most important of all densities.

It accurately describes many practical and significant real-world quantities such as noise.

The distribution function is found from

$$F_X(x) = \int_{-\infty}^x f_X(\xi) d\xi$$

$$F_{X}(x) = \frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} \int_{-\infty}^{x} e^{-(\xi - a_{X})^{2}/2\sigma_{x}^{2}} d\xi$$

The integral has no known closed-form solution and must be evaluated by numerical or approximation method.

However to evaluate numerically for a given x $F_{X}(x) = \frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} \int_{-\infty}^{x} e^{-(\xi - a_{x})^{2}/2\sigma_{x}^{2}} d\xi$ We need σ_{x}^{2} and a_{x} **Example**: Let $\sigma_{x}^{2}=3$ and $a_{x}=5$, then $F_{X}(x) = \frac{1}{\sqrt{2\pi3}} \int_{-\infty}^{x} e^{-(\xi - 5)^{2}/2(3)} d\xi$ We then can construct the Table for various values of x. $\overrightarrow{-20} \quad F_{X}(-20) = \frac{1}{\sqrt{2\pi3}} \int_{-\infty}^{-20} e^{-(\xi - 5)^{2}/2(3)} d\xi \implies \text{Evaluate} \text{Numerically}$ $+6 \quad F_{X}(6) = \frac{1}{\sqrt{2\pi3}} \int_{-\infty}^{6} e^{-(\xi - 5)^{2}/2(3)} d\xi \implies \text{Evaluate} \text{Numerically}$ 19

We will show that the general distribution function $F_X(x)$

$$F_{X}(x) = \frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} \int_{-\infty}^{x} e^{-(\xi - a_{X})^{2}/2\sigma_{x}^{2}} d\xi$$

can be found in terms of the normalize distribution F(x)

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\xi^{2}/2} d\xi \qquad a_{X} = 0 \ , \ \sigma_{x} = 1$$

we make the variable change $u = (\xi - a_x)/\sigma_x$ in $F_x(x)$

$$F_X(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(x - a_X)/\sigma_x} e^{-u^2/2} du = F(x)$$
$$F_X(x) = F\left(\frac{x - a_X}{\sigma_x}\right)$$

8	and another	00000000000000000000000000000000000000	.01	.02	.03	.04	.05	.06	.07	.08	.09
ş	1	.00		5090	5120	5160	5199	.5239	.5279	.5319	.5359
	0.0	.5000	.5040	.5080	5517	5557	.5596	.5636	.5675	.5714	.5753
	0.1	.5398	.5438	.34/0	5010	5948	.5987	.6026	.6064	.6103	.6141
	0.2	.5793	.5832	.38/1	6203	6331	.6368	.6406	.6443	.6480	.6517
	0.3	.6179	.6217	.6255	.0293	6700	6736	.6772	.6808	.6844	.6879
	0.4	.6554	.6591	.0028	7010	7054	7088	.7123	.7157	.7190	.7224
	0.5	.6915	.6950	.6985	7257	7389	7422	.7454	.7486	.7517	.7549
	0.6	.7257	.7291	./324	.1551	7704	7734	.7764	.7794	.7823	.7852
	0.7	.7580	.7611	./042	7067	7995	8023	.8051	.8078	.8106	.8133
	0.8	.7881	.7910	./939	0720	8264	8289	.8315	.8340	.8365	.8389
	0.9	.8159	.8186	.8212	0495	8508	8531	.8554	.8577	.8599	.8621
	1.0	.8413	.8438	.8401	.040J 9709	8729	8749	.8770	.8790	.8810	.8830
	1.1	.8643	.8665	.8680	.0/00	8025	8944	.8962	.8980	.8997	.9015
	1.2	.8849	.8869	.8888	.8907	0000	9115	.9131	.9147	.9162	.9177
	1.3	.9032	.9049	.9066	.9082	9251	9265	.9279	.9292	.9306	.9319
	1.4	.9192	.9207	.9222	.9230	0387	9394	.9406	.9418	.9429	.9441
	1.5	.9332	.9345	.9357	.9370	0405	9505	9515	.9525	.9535	.9545
	1.6	.9452	.9463	.9474	.9484	.9495	9599	9608	.9616	.9625	.9633
	1.7	.9554	.9564	.9573	.9582	0671	9678	9686	.9693	.9699	.9706
	1.8	.9641	.9649	.9656	.9004	.9071	9744	9750	.9756	.9761	.9767
	1.9	.9713	.9719	.9726	.9752	0703	9798	9803	.9808	.9812	.9817
	2.0	.9773	.9778	.9783	.9/88	.9793	9842	9846	.9850	.9854	.9857
	2.1	.9821	.9826	.9830	.9834	.9030	9878	9881	.9884	.9887	.9890
	2.2	.9861	.9864	.9868	.98/1	.9075	0006	9909	.9911	.9913	.9916
	2.3	.9893	.9896	.9898	.9901	.9904	0020	9931	.9932	.9934	.9936
	2.4	.9918	.9920	.9922	.9925	.9927	.9929	9948	.9949	.9951	.9952;
	2.5	.9938	.9940	.9941	.9943	.9945	.9940	9961	.9962	.9963	.9964
	26	0052	0055	9956	9957	.9939	.7900	.7701	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0051

It applies to many experiments that have only two possible outcomes ({H,T}, {0,1}, {Target, No Target}) on any given trial (N). It applies when you have N trials of the experiment of only outcomes and you ask what is the probability of k-successes out of these N trials. Binomial distribution $F_X(x) = \sum_{k=0}^{N} {N \choose k} p^k (1-p)^{N-k} u(x-k)$ $\int_{0}^{10} \int_{0}^{10} \int_{$

Conditional Distribution and Density Functions

For two events A and B the conditional probability of event A given event B had occurred was defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

We extend the concept of conditional probability to include random variables

29

Conditional Distribution

Let X be a random variable and define the event A

$$A = \{X \le x\}$$

we define the conditional distribution function $F_x(x|B)$

$$F_{X}(x|B) = P\{\overline{X \leq x}|B\} = \frac{P\{\overline{X \leq x} \cap B\}}{P(B)}$$

Properties of Conditional Distribution (1) $F_x(-\infty|B) = 0$ proof $F_x(-\infty|B) = P\{X \le -\infty|B\}$ $= \frac{P\{X \le -\infty \cap B\}}{P(B)} = \frac{0}{P(B)} = 0$ (2) $F_x(\infty|B) = 1$ Proof $F_x(\infty|B) = P\{X \le \infty|B\}$ $= \frac{P\{X \le \infty \cap B\}}{P(B)} = \frac{P(B)}{P(B)} = 1$ (3) $0 \le F_x(x|B) \le 1$ (4) $F_x(x_1|B) \le F_x(x_2|B)$ if $x_1 < x_2$ None Decreasing (5) $P\{x_1 < X \le x_2|B\} = F_x(x_2|B) - F_x(x_1|B)$ (6) $F_x(x^+|B) = F_x(x|B)$ Right continuous ³¹

Conditional Density Functions

We define the Conditional Density Function of the random variable X as the derivative of the conditional distribution function

$$f_{X}(x|B) = \frac{dF_{X}(x|B)}{dx}$$

If $F_X(x|B)$ contain step discontinuities as when X is discrete or mixed (continues and discrete) then $f_X(x|B)$ will contain impulse functions.

Properties of Conditional Density

- $(1) \quad f_{X}(x|B) \geq 0$

- (2) $\int_{-\infty}^{\infty} f_X(x|B) dx = 1$ (3) $F_X(x|B) = \int_{-\infty}^{x} f_X(\xi|B) d\xi$ (4) $P\{x_1 < X \le x_2|B\} = \int_{x_1}^{x_2} f_X(x|B) dx$

Next we define the event
$$B = \{X \le b\}$$
 were b is a real number
 $-\infty < b < \infty$

$$\Rightarrow F_X(x|X \le b) = P\{X \le x|X \le b\} = \frac{P\{X \le x \cap X \le b\}}{P\{X \le b\}}$$
 $P\{X \le b\} \neq 0$
Case 1 $x \ge b$
 $\Rightarrow \{X \le b\} \subset \{X \le x\}$
 $\Rightarrow \{X \le b\} \subset \{X \le x\}$
 $\Rightarrow \{X \le x\} \cap \{X \le b\} = \{X \le b\}$
 $\Rightarrow F_X(x|X \le b) = \frac{P\{X \le x \cap X \le b\}}{P\{X \le b\}} = \frac{P\{X \le b\}}{P\{X \le b\}} = 1$
₃₄

x _i		B1	B2	Totals
$Red \rightarrow 1$ 1	Red	5	80	85
$reen \rightarrow 2$ 2	Green	35	60	95
$lue \rightarrow 3$ 3	Blue	60	10	70
		100	150	250

