Chapter 2: The Random Variable

The outcome of a random experiment need not be a number,
for example tossing a coin or selecting a color ball from a
box.

However we are usually interested not in the outcome itself, but
rather in some measurement or numerical attribute of the outcome.

Examples
In tossing a coin we may be interested in the total number of
heads and not in the specific order in which heads and tails

ceur, .
n selecting a student name from an urn (box) we may be

interested in the weight of the student.

In each of these examples, a numerical value is assigned to the
outcome.

Consider the experiment of tossing a coin 3 times and observing the
number of “Heads” (which is a numeric value).

Measurement will also be random
(numeric)
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The Random Variable Concept

A random variable X is a
function that assigns a
real number X(€) to each
outcome ¢ in the sample
space.
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Example 2.1-1: The experiment of rolling a die

and tossing a coin

Let X be a random variable that maps
the “head” outcome to the positive
number which correspond to the dots
on the die, and “tail” outcome map to
the negative number that are equal in
magnitude to twice the number which
appear on the die.
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The Random Variable Concept

Random variables can be

Discrete

Flipping a coin 3 times and counting the number of heads.

Selecting a number from the positive integers.
Number of cars arriving at gas station A.

Continuous

Selecting a number between { 0 and 6 }

{0<X<6}
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Conditions for a Function to be a Random Variable

The Random variable may be any function that satisfies the followings:

e

(1) The random variable function ¢
can map more than one point in S B
into same point on the real line.

The random variable function can ¢ —
not be multivalued. —
X

(2) The set { X <x } corresponds to points in S {e; | X(€;) <x }.

S ———— Equivalent

e {(X<x} = {s.5.8)

Equality

P{X <x} = Plg.¢g,g} =P)tPE)*P(g,)

Example: Tossing a coin 3 times and observing the number of heads

K S
Equivalent
— (X <1)! = {HTT, THT, TTH TTT}
Equality
— P{X <1} — PMHETIT)+P(THT)+P(TTH) + P(TTT) °©
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(3) P{X=-0}=0 P{X=0)=0

This condition does not prevent X from being —oo or +oo
for some values of S. It only requires that the probability
of the set of those S be zero.

Distribution Function

If you have a random variable X which is numeric by mapping a
random experiment outcomes to the real line

Example: Flipping a coin 3 times and counting the
number of heads

We can describe the distribution of the R.V X using the probability

3/8 38
1/8 T T 1/8
A
S
0 1 2 3
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We will define two more distributions of the random variable
which will help us finally to calculate probability.

Distribution Function

We define the cumulative probability distribution function
Fy(x) = P{X x| where,

/.A Small letter indicating parameter
( a value)
Fypld

Capital letter indicating A
the random variable ¥~

In our flipping the coin 3 times and counting the number of heads
FX(Z) = P{X <2

Fy(2) = PIX < 2]=P{X =0}+PLY =1}+P{X =2}
1 3 3 7

g8 8 8 8 0

Example: Let X ={0,1,2,3} with P(X=0)=P(X =3)= ;

P(X:l):P(X=2)=§ 38 38
8 1/8 T T 1/8
4 A
1 b
FX(O):P(XSO)Zg 0 P 5 "
1 3 1
FX(1)=P(Xsl)zP(X:())+p(X=1)=§+§=§
1 3 3 7
FX(2)=P(X£2)=P(X=0)+P(X=1)+P(X=2)=§+§+§=§
1 3 31
FX(3):P(XS3):P(X:O)+P(X:1)+P(X:2)+p(X:3):§+§+§+§=1
Fylx)
78 1
12 4
. T2 3 x 10
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Distribution Function properties

Fyix)

—_

Fy(-0) =0
Fy(o) =1

0 < F,(x) <1
Fe(x) < Fy(x)  if x <x, m__
Plx, <X <x,} = Fy(x,) — Fe(x)

Fo(x") = Fy(x)

o v s

Example: Let X ={0,1,2,3} with P(X=0)=P(X =3)= 21;

P(X:l):P(X=2)=§ 38 38
8 1/8 T T 1/8
i A
1 b
FX(O):P(XSO)Zg 0 P 5 "
1 3 1
FX(1)=P(Xsl)zP(X:())+p(X=1)=§+§=§
1 3 3 7
FX(2)=P(X£2)=P(X=0)+P(X=1)+P(X=2)=§+§+§=§
1 3 31
FX(3):P(XS3):P(X:0)+P(X:1)+P(X:2)+p(X:3):§+§+§+§=1
Fylx)
718
. T2 3 x 12




Let us consider the experiment of tossing the coin 3 times and
observing the number of heads

The probabilities and the distribution function are shown below

Fylx)
3/8 38 !
'y 'y 78
1/8 1/8
A A
= X 12
0 1 2 3

The stair type distribution function can be written as

F.(x)=P(X =0) u(x) +PX =Du(x -)+PX =2)u(x -2)
step function step function step function

+PX =3)u(x -3)

S ——

step function

N
In general = F, (x)=Y P(X =x Ju(x —x,) were N can be infiffite
=

Density Function

— We define the derivative of the distribution function F'(x) as
the probability density function fy(x).

dF, (x
fit = )
dx
»  We call f(x) the density function of the R.V X

* In our discrete R.V since

N
FX(x):ZP(X =x,u(x —x,)
i=l
fX(x)zd(iP(X =x, u(x —x,)j =§:P(X=x)iu(x—x)
dx {5 i1 “dx ’

=§:P(X =X,)0(x—x,)

fe() = 2 P(x)5(x - x)) y
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Fy(x)
78 +

12 +

| 1%

(Density is non-negative derivative

118 +—

Properties of Density Function

1. f,(x)=0 forallx

2. f; fo(x)dx =1

of non-decreasing function)

» Properties (1) and (2) are used to prove if a certain function can
be a valid density function.

15

3. Fy(x) = [ fe(@)de

From (3)=> F| (0) =1
4. Plx, <X <x} = j:fX(x)dx
Since

P(x, < X <x,)=F(x,)— F(x,) = L £ (x)dx— jm £ (xX)dx

16




The Gaussian Random Variable

A random variable X is called Gaussian if its density function
has the form

fr(x) = %
270

where o; >0 and -o<a, <

o ~ax 20!

are real constants (we will see their significance when we
discuss the mean and variance later).

Sl

1
Pt

Maximum
oceurs at
xea,

The “spread” about the point
x = a, is related to o,

17

The Gaussian density is the most important of all densities.

It accurately describes many practical and significant real-world
quantities such as noise.

The distribution function is found from

Fo(x) = fo(&)dé

FX (x) — -(& —ay )Z/Zszdét

1 x
—— e
\2rol 7
The integral has no known closed-form solution and must be
evaluated by numerical or approximation method.

18
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However to evaluate numerically for a given x

1 J'_x e ¢ )2/2de§

270!

Weneed o and a,

Fy(x) =

Example: Let 6.>=3 and a=5, then
1

N273

We then can construct the Table for various values of x.

FX (x) = J._X e - 5)2/2(3)d§

—00

| 2
-20 |F, (-20) = e €904  —>Evaluate
N273 '[ Numerically

L ¢ —c-5rh0
——| e dé —>Evaluate
V273 Lo Numerically

+6 F, (6) =

19

Finally we will get a Table for various values of x.
However there is a problem!

The Table will only work for Gaussian distribution with
0’=3 and a=>5.

We know that not all Gaussian distributions have ¢ =3 and

a=>.

Since the combinations of a, and 2 are infinite (uncountable infinite)
—> Uncountable infinite tables to be constructed

——> Unpractical method

20
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We will show that the general distribution function F'y(x)

1 J-x
\’2770,3 -

can be found in terms of the normalize distribution F(x)

FX (x) = -(¢& —ay )2/263d§

1 X g2
Foy = =[lehe a=0. 0,21

T

we make the variable change u = (¢ — a,)/o, in F,(x)
X X

1 (x —ay)/o, 2
) ) = =] e P pey

FX(_X') = F M

21

TABLE B-1
Values of F(x) for 0 < x < 3.89 in steps of 0.01

x .00 01 02 .03 .04 .05 .06 07 .08

0.0 5000 .5040 5080 5120 5160 5199 5239 5279 5319
0.1 5398 5438  .5478 5517 5557 5596 .5636 5675 5714
0.2 5793 5832 5871 .5910 5948 .5987  .6026 6064 .6103
0.3 6179 6217 6255 .6293 6331 6368 .6406 6443 6480
0.4 6554 6591 6628 6664 6700 6736 6772 6808 .6844
0.5 6915 6950  .6985 7019 7054 7088 7123 157 7190
0.6 7257 7291 7324 7357 7389 7422 7454 7486 7517
0.7 7580 7611 7642 7673 7704 7734 7764 7794 7823
0.8 7881 7910 7939 7967 7995 8023 8051 8078 .8106
0.9 8159 8186  .8212  .8238 8264 8289 8315 8340 .8365
1.0 8413 8438 8461  .8485 8508  .8531  .8554 8577 8599
1.1 8643 8665 .8686  .8708 8729 8749 8770 8790  .8810
1.2 8849  .8869  .8888  .8907 8925 8944 8962 8980  .8997
1.3 9032 9049 9066 9082 9099 9115 9131 9147 9162
14 9192 9207 9222 9236 9251 9265 9279 9292 9306
1.5 9332 9345 9357 9370 9382 9394 .9406 9418 9429
1.6 9452 9463 9474 9484 9495 9505 9515 9525 9535
1.7 9554 9564 9573 9582 9591 9599  .9608 9616 9625
1.8 9641 9649 9656 = .9664 9671 9678 9686 9693 9699
1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761
2.0 9773 9718 9783 9788 9793 9798  .9803 9808 9812
2.1 0821  .9826 9830 9834 9838 9842  .9846 9850 9854
22 9861 9864 9868 9871 9875 9878  .9881 9884 9887
23 9893 9896  .9898 9901 9904  .9906 9909 9911 9913
2.4 9918 9920 9922 .9925 9927 9929 9931 9932 9934
2.5 9938 9940 9941 9943 9945 9946 9948 9949 9951
24 9053 0955 9956 .9957 9959 9960 9961 9962 .9963

an72
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Other Distribution and Density Examples

Binomial

LetO0<p<1, N=1, 2., thenthe function
e N=6 p=025
.

N < [~k 0.3560
fr(x) = Z( kjp‘ A-p)" 66—k [ e
k=0

0.1780 01318

is called the binomial density function [ "P ot ooon
N N ! . ‘ ' 0 .1 2 3 4 5 6
= ——— isthebinomial coefficient
k kN — k)!

The density can be applied to the
- Bernoulli trial experiment.

- Games of chance.

- Detection problems in radar and sonar. 2

It applies to many experiments that have only two possible
outcomes ({H.T}, {0,1}, {Target, No Target}) on any given
trial (N).

It applies when you have N trials of the experiment of only
outcomes and you ask what is the probability of k-successes out
of these N trials.

N

N :
Binomial distribution F, (x) = Z (kjpk A - p) " ulx - k)

k=0

0.9624 0.9954 0.9998 1.0000

0.8306

0.5340

24
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The following figure illustrates the binomial density and distribution
functions for N =6 and p = 0.25.

i)

0.3560

0.2966
03

0.1780. 0.1318

0.0330
* 0.0044  0.0002

0.0624 0.9954 09998 10000

0 1 2 3 4 s 6 x 25

Poisson
developed by the French mathematician Simeon Denis Poisson in 1837

The Poisson RV X has a density and distribution

N=10

0 k

£r() = e% S(x — k)

Fo(x) =e’ i% u(x — k)

k=0"M"-

Where b > 0 is a real constant.

Binomial — Poisson
N > o

p—0
Np = b(constant)

2/2/2015
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The Poisson RV applies to a wide variety of counting-type
applications:

- The number of defective units in a production line.
- The number of telephone calls made during a period of time.

- The number of electrons emitted from a small section of a
cathode in a given time interval.

27

Rayleigh

The Rayleigh density and distribution functions are

%(x - a)e‘(x“’)z/b X > a

fX(x) =
0 X < a
l— el >4
FX(x) = {
0 x < a

for real constants—o <a<w and b >0

Felx) Fylx)

06073

28
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Conditional Distribution and Density Functions
For two events A and B the conditional probability of event

A given event B had occurred was defined as

P(AB)

P(AB) = bB)

We extend the concept of conditional probability to include
random variables

29

Conditional Distribution

Let X be a random variable and define the event A

A={XSX}

R (X <x}NB
<
F,(x[B) = P{X < x|B} = AX = x(1B}
P(B)

30
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Properties of Conditional Distribution
(1) E(-oB)=0
proof  F(—oB)=P{X < —xB}
P{X < —ooﬂB} 0
P(B) CPB)

(2) F(«B)=1
Proof Fy(oB)=P{X < «|B}

P{X < »(\B} _P® _,

P(B) " P(B)

3 O0=<FKxB) =<1
4 F(x,B) £ K(x,B) if  x, <x, None Decreasing
(5) P{Xl <X < Xz’B} =FX(X2‘B) - FX(XI‘B)

(6) FE.(x'B)=F(xB) Right continuous 31

Conditional Density Functions

We define the Conditional Density Function of the random
variable X as the derivative of the conditional distribution
function

dE, (x|B)
dx
If F,(x/B) contain step discontinuities as when X is discrete or

mixed (continues and discrete ) then £, (x|B) will contain
impulse functions.

fxy(xIB) =

32
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Properties of Conditional Density

(1) f(xB) > 0
2) j_“;fx (x/B) dx = 1
(3)  F(xB)= [ fy(gB)de

@ P{x, <X < x,[B} = [ ", (xB)dx

33

Next we define the event B = {X < b} were b is a real number

—0<b<w

= F(xX < b)=P{X < xX < b} =

P{X < b}

P{X < b} # 0
Case 1 x2>b — X

b x
= {X< b} c X <x}
= {X< x} N {X< b}={X< b}
~F.(xIX < b) = P{X < xNX< b} P{X < b} .

P{X < b} P{X < b} w

2/2/2015
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Case 2 x < b —

= {X<x} c{X<b}
= {X< x} N {X< b} ={X< x}

P{X <xNX< b} PIX<x _ KK

= K&X <b) = P{X < b} - P{X < b} Fx(b)

By combining the two expressions we get

K&y
F (X < b)={E,(b)
1 b <x

35

then the conditional distribution Fy(x|X <b) is never smaller then the

ordinary distribution Fy(x)

K (x)
Fe(xIX < b)= { E(b)
1

Fylx X<b)or Fy(x)

= FK XX £b) 2 F(x)

~
SR (eX<h)

<b

36
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The conditional density function derives from the derivative

fy (%) _ £ (%)
—1EO® [ £ x)dx
0 X

_dE (XX £ b)

£ (xX < b) ™

Similarly for the conditional density function

Fr@lX<b)er fr)

=L, xX < b) =2 £(x)

fbixsh)

£

x<b

\%
lon

Example 2.61-1 Two Boxes have Red, Green and Blue Balls

X; B1 B2 Totals
Red— 1| [1 Red |5 80 85
Green — 2| [2 Green |35 60 95
Blue — 3| |3 Blue |60 10 70
100 150 250

Assume P(B1)=2/10 and P(B2)=8/10
B1 and B2 are mutually exclusive Events

38
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Example 8 Let X be arandom variable with an exponential

probability density function given as

e x 20

fX(x):{
0 x <0

Find the probability P( X <1 | X <2)

IO TP
Since  f, (x|X <2)= [ G _ |1
0 x >2 0

1

N Lo
PX <X < 2)_'@IfX (x]X < 2)dx —.([ l—e*2dx
J'e"‘dx e
_o =1t 07310
l-e 2 l—e™

40
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P <1IX <2)=[f, (x]X < dr=] €

-2

je‘xdx e
= Ol—e’2 = 1:272 =0.7310

41
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