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EE 213 ELECTRIC CIRCUITS II

Resonance Circuits

Dr. Hakan Köroğlu
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 A sinusoidal voltage source is identified as:

where  is the frequency,  is the phase angle and
Vm is the maximum amplitude.

 A sinusoidal current source is identified similarly as:

 The response of a linear circuit in steady-state in
response to a sinusoidal source is also sinusoidal:

 with the same frequency and

 with possibly different amplitude and phase.

Recap: Sinusoidal Steady-State Analysis
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For linear circuits with sinusoidal sources, phasor
transform leads to algebraic frequency domain
analysis:

 The relation between voltage over an element and
current through the element is expressed in the
frequency domain as:

 Z is referred to as the impedance and its reciprocal
is called the admittance:

Recap: Phasor, Impedance & Admittance
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  j
m mV Ve cos t   V P

ZV I
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 All circuit analysis techniques for resistive circuits are
extended to sinusoidal steady-state analysis by using
the frequency-dependent impedance expressions.

Recap: Impedance and Related Values
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Element Impedance 
(Z)

Reactance Admittance 
(Y)

Susceptance

Resistor R 
(resistance)

 1/R 
(conductance)



Inductor jL L 1/(jL) 1/(L)

Capacitor 1/(jC) 1/(C) jC C
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 The impedance of an arbitrary RLC circuit is thus
frequency-dependent.

 This dependence can be depicted graphically by
magnitude and phase angle versus frequency, which
constitute the frequency response of the impedance.

 Parallel RC impedance:

Frequency Response
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Frequency Response: Parallel RC
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   Z j tan RC    1

Amplitude response Phase response
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 Cut-off frequencies are those at which the average
power is half of its maximum value.

 Maximum average power for the above circuit:

 The power is halved at  = c = 1/RC :

Half-Power or Cut-Off Frequency
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 A circuit is said to be at resonance if the imaginary
part of its impedance or admittance is zero.

 For the parallel RLC circuit:

 The imaginary part (susceptance) is zero at:

Resonance: Parallel RLC
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 The resonance frequency for this circuit is:

Example: Resonance Frequency
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 Bandwidth is defined in terms of the half-power
frequencies as:

 The response gets sharper as the bandwidth gets
smaller.

Parallel RLC: Magnitude Response
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 The quality factor is defined at the resonance as:

 Since energy is stored by the capacitors/inductors
and it is dissipated by the resistors, we have:

Quality Factor
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 Consider a source with current

 At resonance, we have Y = 1/R . Hence:

 The inductor current is obtained via phasor analysis:

 The energy stored in the inductor is then given by:

Quality Factor: Parallel RLC
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 The total energy stored is thus a constant:

 The total energy dissipated by the resistor over a
period is found as:

 Hence the quality factor of a parallel RLC circuit is:

Quality Factor: Parallel RLC (ctd.)
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 Since Q/R = rC = 1/rL, the admittance satisfies:

 At the half-power frequencies, we have:

 We can obtain 1, 2 and the bandwidth as:

 The ratio is also called the selectivity.

Bandwidth for Parallel RLC
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 Resonance frequency:

 Quality factor:

 Half-power frequencies:

 Bandwidth:

Resonance: Series RLC
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Resonance: Parallel and Series RLC
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 Resonance frequency:
 No resonance for larger RL values !

 For the parallel (series) RLC the magnitude of the
admittance (impedance) is minimum. Neither is the
case for the series-parallel RLC circuit.

Series-Parallel RLC Circuit
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 The quality factor is defined in a similar way.
Consider the case of inductive reactance.

 The maximum total energy stored:

 The energy dissipated per period:

 Quality factor:

Series Inductive or Capacitive Reactance
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 For a general series reactance:

 For a general parallel reactance:

 Remark: Note that the quality factor is frequency-
dependent.

Series versus Parallel Reactance
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 Suppose that the series reactance has a large ( 20)
Q-factor (called a high-Q coil).

 The admittance can then be approximated by:

 The resonance frequency is approximated as:

High-Q Resonant Circuit
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 Based on the impedance approximation

the admittance can be approximated as

Equivalent High-Q Resonant Circuit

21

C

L

Rs

 R j L
j C L / CZ

R j L R j L
j C j C

 


 
     

 

s

s s

1

1 1

R CY j C
L j L

   


s 1

 CL
L

R Cs

 Magnitude (impedance) scaling:

Dependent sources with a unit of  (Siemens) are
multiplied (divided) by Km.

Magnitude Scaling of a Circuit
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 Frequency scaling:

 Magnitude scaling does not change the bandwidth.

 Frequency scaling scales the bandwidth too:

Frequency Scaling of a Circuit
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