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EE 213 ELECTRIC CIRCUITS II

Chapters 6 and 9
Mutual Inductance and Transformers

Dr. Hakan Köroğlu
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 The circuits studied so far can be considered as
conductively coupled, since loops affect each other
by current conduction.

 When two loops with or without contact affect each
other through magnetic fields, they are said to be
magnetically coupled.

 The transformer is a device designed based on the
concept of magnetic coupling.

 In preparation for the study of transformers, we will
first make a brief recap of self inductance and then
discuss the concept of mutual inductance.

Magnetically Coupled Circuits
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 Consider a coil of N turns, through which a current i
is flowing.

 Faraday’s Law: The voltage induced in the coil is
given by the rate-of-change of the flux linkage:

Faraday’s Law
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v t   d   t 

dt
 N

d   t 
dt

 The magnitude of the flux is given by:

 The permeance is flux-dependent for magnetic
materials (like iron, nickel, cobalt), whereas it is
constant for nonmagnetic materials.

 When the core material of the coil is nonmagnetic:

 The proportionality constant is the self-inductance:

Self Inductance
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P N i P    ;   : permeance of the field occupied by the flux
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 Now consider two neighboring coils wound on a
nonmagnetic core, with a current in the first one:

 Using Faraday’s law, we find:

Magnetically-Coupled Coils
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 When the current is fed to the second coil:

 For nonmagnetic core materials, we have:

 L1 and L2 are the self inductances, whereas M is the
mutual inductance between the coils.

Mutual Inductance
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 Recall the inductance expressions:

 For nonmagnetic core materials, we have:

 Coupling is quantified by the coefficient of coupling:

The Coefficient of Coupling
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k � 0.5,1 : tightly coupled; k � 0,0.5 : loosely coupled

 The polarity of self-induced voltage is identified from
the direction of the current.

 The polarity of the mutually-induced voltage is
identified based on the dot convention.

 Dot convention: When the current enters (leaves)
the dotted terminal of a coil, the polarity of the
voltage it induces in the other coil is positive
(negative) at its dotted terminal.

Voltage Polarity and the Dot Convention
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 The easiest way to analyze circuits containing mutual
inductance is to use mesh currents.

 KVL is then applied with the addition of the mutually
induced voltage with appropriate polarity:

Application of the Dot Convention
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g
di div R i L M
dt dt
di diR i L M
dt dt

  

  

1 2
1 1 1

2 1
2 2 20

 The dependent source voltages are determined by
the derivatives of the currents. The polarities of the
sources are identified from the dot convention.

Equivalent Circuit for Mutual Inductance
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Example: Mesh Current Equations
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 g
d i i
dt

  28  Additional terms

 Arbitrarily select and mark a
terminal, say D, with a dot.

 Assign a current iD to it.
 Determine the direction of the

induced magnetic flux, D, based
on the right-hand rule.

 Arbitrarily pick a terminal of the
second coil, say A, and apply the
same steps again.

 If the directions A and D are the
same, then place a dot on A.

 If the directions are opposite,
place a dot on the other terminal.

Procedure for Determining Dot Markings

12



7

 Put a dot on the terminal to which the resistor is
connected.

 Observe the momentary deflection of the DC
voltmeter when the switch is closed.

 If it is upscale/downscale, put a dot on the terminal
connected to the positive/negative terminal of the
voltmeter.

Experimental Setup for Dot Marking
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 Assume zero initial energy.
 Increase i1 from zero to I1:

 Keep i1 = I1 constant; increase i2 from zero to I2:

 Total energy stored in the coils:

Energy Calculations
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 Total energy stored in the coils at time t (with the
dot marking not specified) :

 When the order of the procedure is reversed:

 For linear coupling media M12 = M21 = M, which
means that the total energies stored are the same.

 Determining the sign: If both currents are entering or
leaving the dotted terminals, then the sign is
positive; otherwise the sign is negative.

Total Energy Stored in the Coils
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 Consider finding the i2 that minimizes W:

 Equate the first derivative to zero find the minimum:

 Since the energy is  its minimum value, we have:

Positivity of the Total Energy
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 Transformer is a device based on magnetic coupling.

 In communication circuits, transformers are used to
match impedances and eliminate DC signals.

 In power circuits, transformers are used to establish
AC voltage levels that facilitate the transmission,
distribution and consumption of electrical power.

 We will first analyze the steady-state behavior of the
linear transformer, which is common in
communication systems.

 We will then study the ideal transformer, which
models the ferromagnetic transformer used in power
systems.

Transformers
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R1 Resistance of the secondary winding
R2 Resistance of the secondary winding
L1 Self-inductance of the primary winding
L2 Self-inductance of the secondary winding
M Mutual inductance
VS Source voltage
ZS Source impedance
ZL Load impedance
I1 Primary current
I2 Secondary current

The Linear Transformer

18

Primary 
winding 

Secondary
winding 
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 Phasor analysis is adapted easily: dx/dt  j  X

Analysis of a Linear Transformer
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 The impedance seen from the nodes a and b is:

 A key role of the transformer is thus revealed:
Changing the impedance seen by the source:

The Impedance Seen by the Source
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 Impedance of the second coil plus load is transmitted
to the primary side via the mutual inductance:

 When the load impedance is ZL = RL+jXL, we have:

 The impedance is thus conjugated and then scaled
during the reflection.

The Reflected Impedance
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 Scaling factor:

 Reflected impedance:

 Impedance seen from a - b:

 Thevenin equivalent seen from c – d:

Example: Linear Transformer Circuit
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 An ideal transformer consists of two magnetically
coupled coils having N1 and N2 turns respectively, and
exhibiting the following three properties:

 The coefficient of coupling is unity.

 The self-inductance of each coil is infinite.

 The coil losses, due to parasitic resistances, are
negligible.

The Ideal Transformer
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 Setting M2= L1L2 and letting L1, L2, we find:

 As k  1, the two permeances P1, P2 become equal:

Analysis of the Limit Values
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 The voltages of the primary and secondary windings
of an ideal transformer are related as:

 The currents of the primary and secondary windings
of an ideal transformer are related as:

 The polarities are determined via the dot convention.

Ideal Transformer Relations
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 The voltage ratio is determined using the left circuit:

 The current ratio is determined using the right circuit:

Determining the Voltage-Current Ratios
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 If the coil voltages and are both positive or negative
at the dot-marked terminal, use a plus sign in the
voltage ratio; otherwise, use a minus sign.

 If the coil currents are both directed into or out of
the dot-marked terminal, use a minus sign in the
current ration; otherwise, use a plus sign.

Determining the Polarities
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 The ideal transformer relations are:

 Then the impedance seen by the practical source is:

 The practical version of the ideal transformer is the
ferromagnetic core transformer. It is used to match
the magnitude of ZL to the magnitude of Zs.

IdealTransformerfor ImpedanceMatching

28

VV I aI
a

 2
1 1 2  and  

V VZ Z
I a I a

  1 2
in L2 2

1 2

1 1

Zin



15

 Zin:

 V1:

 V2:

 I2 :

Example: Ideal Transformer Circuit
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