EE 213 ELECTRIC CIRCUITS II

Lecture 7
Two-Port Circuits

Dr. Hakan Köroğlu

King Jahd University of Petroleum & Minerals
ELECTRICAL ENGINEERING DEPARTMENT

Two-Port Circuits

- > Two-port model is used to describe a circuit in terms of its voltage & current at input & output terminals.
- ➤ As the points where the signals are fed or extracted, the terminals are also referred to as **ports**.
- > The model is limited to circuits in which:
 - there are no independent sources inside the circuit between the ports
 - there is no energy stored inside the circuit between the ports
 - the current entering a port is equal to the current leaving that port
 - there is no external connection between the input and output ports

,

Description in the s-Domain

- ➤ We are mainly interested in relating the currents and voltages in both ports to each other.
- > The most general description of a linear two-port is expressed in the s-domain with variables $\mathcal{V}_1, \mathcal{V}_2, I_1, I_2$.
- > Two (out of four) variables are independent. Hence two equations are enough for describing the system.
- ➤ There are, however, six different ways for expressing the relation among the variables.

3

The Terminal Equations

 \succ The six different equations are expressed in terms of six different groups of parameters: z, y, a, b, h, g

The Impedance Parameters

 \triangleright The impedance parameters (z_{ij}) can be determined by computations or experiments as (in units of Ω):

$$\begin{array}{rcl} \mathcal{V}_{1} & = & z_{11}I_{1} + z_{12}I_{2} \\ \mathcal{V}_{2} & = & z_{21}I_{1} + z_{22}I_{2} \\ z_{11} & = \frac{\mathcal{V}_{1}}{I_{1}}\bigg|_{I_{2} = 0}, \quad z_{21} = \frac{\mathcal{V}_{2}}{I_{1}}\bigg|_{I_{2} = 0}, \quad z_{12} = \frac{\mathcal{V}_{1}}{I_{2}}\bigg|_{I_{1} = 0}, \quad z_{22} = \frac{\mathcal{V}_{2}}{I_{2}}\bigg|_{I_{1} = 0} \end{array}$$

- ➤ Also called **open circuit impedance parameters**:
- \square z_{11} : open circuit input impedance
- $\square z_{22}$: open circuit output impedance
- \square z_{21} : open circuit transfer impedance from port 2 to 1
- \square z_{12} : open circuit transfer impedance from port 1 to 2

Example: Two-Port z-Parameters

$$ightharpoonup Z_{11}$$
: $Z_{11} = \frac{V_1}{I_1} \Big|_{I_2 = 0} = \frac{20(5+15)}{20+5+15} = 10 \Omega$

$$Z_{22}$$
: $Z_{22} = \frac{V_2}{I_2} = \frac{15(5+20)}{15+5+20} = 9.375 \Omega$

$$ho$$
 Z_{21} : $Z_{21} = \frac{V_2}{L} \Big|_{V_1} = \frac{V_2}{V_1} \frac{V_1}{L} \Big|_{V_2} = Z_{11} \frac{V_2}{V_2} \Big|_{V_3} = \frac{15}{15+5} 10 = 7.5 \Omega$

$$Z_{22}: \quad Z_{22} = \frac{\gamma_2}{I_2}\Big|_{I_1 = 0} = \frac{15(5+20)}{15+5+20} = 9.375 \Omega$$

$$Z_{21}: \quad Z_{21} = \frac{\gamma_2}{I_1}\Big|_{I_2 = 0} = \frac{\gamma_2}{\gamma_1} \frac{\gamma_1}{I_1}\Big|_{I_2 = 0} = Z_{11} \frac{\gamma_2}{\gamma_1}\Big|_{I_2 = 0} = \frac{15}{15+5} 10 = 7.5 \Omega$$

$$Z_{12}: \quad Z_{12} = \frac{\gamma_1}{I_2}\Big|_{I_2 = 0} = \frac{\gamma_1}{\gamma_2} \frac{\gamma_2}{I_2}\Big|_{I_1 = 0} = Z_{22} \frac{\gamma_1}{\gamma_2}\Big|_{I_1 = 0} = \frac{20}{20+5} 9.375 = 7.5 \Omega$$

The Admittance Parameters

 \triangleright The admittance parameters (y_{ij}) can be determined by computations or experiments as (in units of S):

$$\begin{aligned} I_1 &= y_{11} \mathcal{V}_1 + y_{12} \mathcal{V}_2 \\ I_2 &= y_{21} \mathcal{V}_1 + y_{22} \mathcal{V}_2 \\ y_{11} &= \frac{I_1}{\mathcal{V}_1} \bigg|_{\mathcal{V}_2 = 0}, \quad y_{21} = \frac{I_2}{\mathcal{V}_1} \bigg|_{\mathcal{V}_2 = 0}, \quad y_{12} = \frac{I_1}{\mathcal{V}_2} \bigg|_{\mathcal{V}_1 = 0}, \quad y_{22} = \frac{I_2}{\mathcal{V}_2} \bigg|_{\mathcal{V}_1 = 0} \end{aligned}$$

- ➤ Also called **short circuit admittance parameters**:
- \square y_{11} : short circuit input admittance
- \square y_{22} : short circuit output admittance
- $\ \square\ y_{12}$: short circuit transfer admittance from port 2 to 1
- > z and y together are called **immitance parameters**.

7

Example: Two-Port y-Parameters

➤ In some cases it might be more convenient to obtain the two-port parameters directly from KVL/KCL:

$$I_{1} = \frac{\gamma_{1}}{20} + \frac{\gamma_{1} - \gamma_{2}}{5} \Rightarrow I_{1} = \underbrace{\left(\frac{1}{20} + \frac{1}{5}\right)}_{y_{11}} \gamma_{1} + \underbrace{\left(-\frac{1}{5}\right)}_{y_{12}} \gamma_{2}$$

$$I_{2} = \frac{\gamma_{2}}{15} + \frac{\gamma_{2} - \gamma_{1}}{5} \Rightarrow I_{2} = \underbrace{\left(-\frac{1}{5}\right)}_{y_{21}} \gamma_{1} + \underbrace{\left(\frac{1}{15} + \frac{1}{5}\right)}_{y_{22}} \gamma_{2}$$

Relationship Among y and z Parameters

- ➤ Different two-port parameters might be obtained from each other.
- ➤ Relation between y and z parameters is derived as:

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} \Rightarrow \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}^{-1} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} \frac{y_{22}}{\Delta y} & -\frac{y_{12}}{\Delta y} \\ -\frac{y_{21}}{\Delta y} & \frac{y_{11}}{\Delta y} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}, \text{ where } \Delta y = \frac{1}{y_{11}y_{22} - y_{12}y_{21}}$$

9

Transmission and Hybrid Parameters

> Recall the equations of an ideal transformer:

$$\frac{\mathcal{V}_1}{\mathcal{N}_1} = \frac{\mathcal{V}_2}{\mathcal{N}_2}, \quad \mathcal{N}_1 I_1 = -\mathcal{N}_2 I_2$$

- ➤ Hence z and y parameters need not always exist!
- ➤ Hybrid and transmission parameters are therefore useful for describing some two-port circuits.
- ➤ These parameters do not have the same units. In fact some are just ratios and don't have any unit.

The Transmission Parameters

 \succ The transmission parameters a_{ij} can be determined by computations or experiments as:

$$\begin{aligned} \mathcal{V}_{1} &= a_{11}\mathcal{V}_{2} - a_{12}I_{2} \\ I_{1} &= a_{21}\mathcal{V}_{2} - a_{22}I_{2} \\ a_{11} &= \frac{\mathcal{V}_{1}}{\mathcal{V}_{2}}\Big|_{I_{2} = 0}, \ a_{21} &= \frac{I_{1}}{\mathcal{V}_{2}}\Big|_{I_{2} = 0} \text{S,} \ a_{12} &= -\frac{\mathcal{V}_{1}}{I_{2}}\Big|_{\mathcal{V}_{2} = 0} \Omega, \ a_{22} &= -\frac{I_{1}}{I_{2}}\Big|_{\mathcal{V}_{2} = 0} \end{aligned}$$

- > These parameters are referred to as follows:
- \square a_{11} : open-circuit reverse voltage ratio
- \square a_{22} : negative short-circuit reverse current ratio
- \square a_{21} : open circuit transfer admittance
- \square a_{12} : negative short-circuit transfer impedance

11

The Inverse Transmission Parameters

> The inverse transmission parameters θ_{ij} can be determined by computations or experiments as:

- > These parameters are referred to as follows:
- \square \mathcal{b}_{11} : open-circuit voltage gain
- $\ \square \ \emph{b}_{\it 22}$: negative short-circuit current gain
- \square \mathcal{b}_{21} : open circuit transfer admittance
- \square \mathcal{b}_{12} : negative short-circuit transfer impedance
- ➤ a & b parameters are used in transmission line analysis

Relationship Among a and z Parameters

> Relation between a and z parameters is derived as:

$$\begin{array}{rcl}
\mathcal{V}_{1} & = & a_{11}\mathcal{V}_{2} - a_{12}I_{2} \\
I_{1} & = & a_{21}\mathcal{V}_{2} - a_{22}I_{2}
\end{array} \Rightarrow \mathcal{V}_{2} = \frac{1}{\underbrace{a_{21}}}I_{1} + \underbrace{\frac{a_{22}}{a_{21}}}_{Z_{22}}I_{2}$$

$$\Rightarrow \mathcal{V}_{1} = a_{11} \left(\frac{1}{a_{21}} I_{1} + \frac{a_{22}}{a_{21}} I_{2} \right) \mathcal{V}_{2} - a_{12} I_{2} = \underbrace{\frac{a_{11}}{a_{21}}}_{Z_{11}} I_{1} + \underbrace{\frac{a_{11} a_{22} - a_{12} a_{21}}{a_{21}}}_{Z_{12}} I_{2}$$

➤ One can also obtain an individual parameter by applying the associated method of computation:

$$Z_{11} = \frac{\mathcal{V}_1}{I_1} \bigg|_{I_2 = 0} = \frac{a_{11}\mathcal{V}_2 - a_{12}I_2}{a_{21}\mathcal{V}_2 - a_{22}I_2} \bigg|_{I_2 = 0} = \frac{a_{11}}{a_{21}}$$

13

The Hybrid Parameters

 \succ The **hybrid parameters** h_{ij} can be determined by computations or experiments as:

$$\begin{array}{rcl} \mathcal{V}_{1} &=& \mathcal{H}_{11}I_{1}+\mathcal{H}_{12}\mathcal{V}_{2}\\ I_{2} &=& \mathcal{H}_{21}I_{1}+\mathcal{H}_{22}\mathcal{V}_{2}\\ \\ \mathcal{H}_{11} &=& \frac{\mathcal{V}_{1}}{I_{1}}\bigg|_{\mathcal{V}_{2} \,=\, 0} \, \Omega, \;\; \mathcal{H}_{21} = \frac{I_{2}}{I_{1}}\bigg|_{\mathcal{V}_{2} \,=\, 0}, \;\; \mathcal{H}_{12} = \frac{\mathcal{V}_{1}}{\mathcal{V}_{2}}\bigg|_{I_{1} \,=\, 0}, \;\; \mathcal{H}_{22} = \frac{I_{2}}{\mathcal{V}_{2}}\bigg|_{I_{1} \,=\, 0} \, S \end{array}$$

- ➤ These parameters are referred to as follows:
- \square \hat{h}_{11} : short-circuit input impedance
- \square h_{22} : open-circuit output admittance
- \square h_{21} : short-circuit forward current gain
- \square \hat{h}_{12} : Open-circuit reverse voltage gain

The Inverse Hybrid Parameters

> The inverse hybrid parameters g_{ij} can be determined by computations or experiments as:

$$\begin{split} I_{_{1}} &= \left. \begin{array}{rcl} \mathcal{G}_{_{11}} \mathcal{V}_{_{1}} + \mathcal{G}_{_{12}} I_{_{2}} \\ \mathcal{V}_{_{2}} &= \left. \mathcal{G}_{_{21}} \mathcal{V}_{_{1}} + \mathcal{G}_{_{22}} I_{_{2}} \\ \mathcal{G}_{_{11}} &= \frac{I_{_{1}}}{\mathcal{V}_{_{1}}} \bigg|_{I_{_{2}} = 0} \, \mathrm{S}, \;\; \mathcal{G}_{_{21}} = \frac{\mathcal{V}_{_{2}}}{\mathcal{V}_{_{1}}} \bigg|_{I_{_{2}} = 0}, \;\; \mathcal{G}_{_{12}} = \frac{I_{_{1}}}{I_{_{2}}} \bigg|_{\mathcal{V}_{_{1}} = 0}, \;\; \mathcal{G}_{_{22}} = \frac{\mathcal{V}_{_{2}}}{I_{_{2}}} \bigg|_{\mathcal{V}_{_{1}} = 0} \, \Omega \end{split}$$

- > These parameters are referred to as follows:
- $\square g_{11}$: open-circuit input admittance
- $\square g_{22}$: short-circuit output impedance
- $\square g_{21}$: open-circuit forward voltage gain
- $\square g_{12}$: short-circuit reverse current gain
- ➤ h & g parameters are used in transistor circuit analysis

15

Example: Two-Port h-Parameters

$$h_{11}$$
: $h_{11} = \frac{V_1}{I_1}\Big|_{V_2 = 0} = s + \frac{1/s}{1+1/s} = \frac{s^2 + s + 1}{s + 1}$

$$h_{21}: \hat{h}_{21} = \frac{I_2}{I_1}\Big|_{V_2 = 0} = \frac{I_2}{V_1}\Big|_{V_2 = 0} \hat{h}_{11} = -\frac{1/(s+1)}{(1/(s+1)+s)1/s} \hat{h}_{11} = -\frac{s}{s+1}$$

$$harpoonup \hat{h}_{12}$$
: $\hat{h}_{12} = \frac{Y_1}{Y_2}\Big|_{I_4 = 0} = \frac{1}{1 + 1/s} = \frac{s}{s + 1}$

$$\hat{h}_{22}: \hat{h}_{22} = \frac{I_2}{Y_2}\Big|_{I_1 = 0} = \frac{1}{1 + 1/s} = \frac{s}{s + 1}$$

Reciprocal Two Port Circuits

➤ A two-port circuit is reciprocal if the interchange of an ideal voltage source at one port with an ideal ammeter at the other port produces the same ammeter reading.

➤ A circuit is also reciprocal if the interchange of an ideal current source at one port with an ideal voltmeter at the other port produces the same voltmeter reading.

17

Reciprocal Two Port Circuit Properties

➤ The impedance and admittance matrices of a reciprocal two port circuit are symmetric:

$$Z_{12} = Z_{21}, \quad y_{12} = y_{21}$$

➤ The hybrid parameters of a reciprocal circuit satisfy the following properties:

$$h_{12} = -h_{21}, g_{12} = -g_{21}$$

➤ The transmission parameters of a reciprocal circuit satisfy the following properties:

$$\Delta a \Box a_{11}a_{22} - a_{12}a_{21} = 1, \ \Delta b \Box b_{11}b_{22} - b_{12}b_{21} = 1$$

Symmetric Two Port Circuits

- ➤ A reciprocal two-port circuit is **symmetric**, if its ports can be interchanged without disturbing the values of the terminal currents and voltages.
- > Parameters of a symmetric two-port circuit satisfy:

$$\begin{aligned} z_{11} &= z_{22}, \ y_{11} &= y_{22}, \ a_{11} &= a_{22}, \ \mathcal{b}_{11} &= \mathcal{b}_{22} \\ \Delta h & \Box h_{11} h_{22} - h_{12} h_{21} &= 1, \ \Delta g & \Box g_{11} g_{22} - g_{12} g_{21} &= 1 \end{aligned}$$

- ➤ For a reciprocal two-port, only three calculations or measurements are needed to determine a set of parameters.
- ➤ For a symmetric two-port, only two calculations or measurements are needed for the same purpose.

10

Examples of Symmetric Circuits

Analysis of Terminated Two-Port Circuits

- ➤ In the typical application of a two-port model, the circuit is driven at port-1 and loaded at port-2.
- > The new ingredients in the above configuration are:
- $\square \mathcal{Z}_{a}$: the internal impedance of the source
- $\square \mathcal{V}_{q}$: the internal voltage of the source
- $\square \mathcal{Z}_{L}$: the load impedance
- > The solution of the circuit is obtained in terms of the two-port parameters, V_{q_1} , Z_{q} and Z_{l} .

21

Characteristics of Terminated Two-Ports

- ➤ Six characteristics of a terminated two-port circuit define its terminal behavior:
- \Box The input impedance (admittance) $Z_{in} = V_1/I_1$ (1/ Z_{in})
- \Box The output current I_2
- fill Thevenin parameters ($\mathcal{V}_{\mathsf{th}}$, $\mathcal{Z}_{\mathsf{th}}$) with respect to port-2
- \Box The current gain I_2/I_1
- lacksquare The voltage gain $\mathcal{V}_{\text{2}}/\mathcal{V}_{\text{1}}$
- $f \square$ The voltage gain $\mathcal{V}_{\scriptscriptstyle 2}/\mathcal{V}_{\scriptscriptstyle g}$

Characteristics in terms of z Parameters

- ➤ We derive the six characteristics in terms of z parameters.
- > Recall the circuit relation for the z parameters:

$$\begin{array}{rcl}
\mathcal{V}_{1} & = & Z_{11}I_{1} + Z_{12}I_{2} \\
\mathcal{V}_{2} & = & Z_{21}I_{1} + Z_{22}I_{2}
\end{array}$$

➤ Connection with the source and termination with the load imposes the following equations:

$$\begin{array}{rcl}
\mathcal{V}_{1} & = & \mathcal{V}_{g} - \mathcal{Z}_{g} I_{1} \\
\mathcal{V}_{2} & = & -\mathcal{Z}_{1} I_{2}
\end{array}$$

➤ The characteristics are obtained by using the equations relevant for the computation.

22

The Input Impedance

➤ In order to obtain the input impedance, we first obtain port-2 current in terms of port-1 current:

$$V_2 = Z_{21}I_1 + Z_{22}I_2 = -Z_LI_2 \Rightarrow I_2 = -\frac{Z_{21}}{Z_{22} + Z_1}I_1$$

> We then use this in the equation for port-1 voltage:

$$V_1 = Z_{11}I_1 + Z_{12}I_2 = \left(Z_{11} - \frac{Z_{12}Z_{21}}{Z_{22} + Z_L}\right)I_1$$

➤ In this fashion, we obtain the input impedance as:

$$Z_{\rm in} = Z_{11} - \frac{Z_{12}Z_{21}}{Z_{22} + Z_{\rm L}}$$

The Terminal Current

➤ In order to find the terminal current, we first combine the equations in Slide-23 as:

$$\mathcal{V}_{1} = Z_{11}I_{1} + Z_{12}I_{2} = \mathcal{V}_{g} - Z_{g}I_{1} \Rightarrow (Z_{11} + Z_{g})I_{1} + Z_{12}I_{2} = \mathcal{V}_{g}$$

$$\mathcal{V}_{2} = Z_{21}I_{1} + Z_{22}I_{2} = -Z_{L}I_{2} \Rightarrow Z_{21}I_{1} + (Z_{22} + Z_{L})I_{2} = 0$$

➤ The solution for the port-2 current can directly be obtained from Cramer's rule as:

$$I_{2} = \frac{\begin{vmatrix} Z_{11} + Z_{g} & \mathcal{V}_{g} \\ Z_{12} & 0 \end{vmatrix}}{\begin{vmatrix} Z_{11} + Z_{g} & Z_{12} \\ Z_{21} & Z_{22} + Z_{L} \end{vmatrix}} = -\frac{Z_{12}}{(Z_{11} + Z_{g})(Z_{22} + Z_{L}) - Z_{12}Z_{21}} \mathcal{V}_{g}$$

25

Thevenin Parameters seen from Port-2

> Thevenin impedance is found by setting the source voltage to zero finding the ratio \mathcal{V}_2/I_2 :

$$\mathcal{V}_{1} = Z_{11}I_{1} + Z_{12}I_{2} = \mathbf{0} - Z_{g}I_{1} \Rightarrow (Z_{11} + Z_{g})I_{1} + Z_{12}I_{2} = 0$$

$$\mathcal{V}_{2} = Z_{21}I_{1} + Z_{22}I_{2} \Rightarrow Z_{21}I_{1} + (Z_{22} + Z_{L})I_{2} = \mathcal{V}_{2}$$

➤ The Thevenin impedance is hence obtained as:

$$I_{2} = \frac{\begin{vmatrix} Z_{11} + Z_{g} & 0 \\ Z_{21} & V_{2} \end{vmatrix}}{\begin{vmatrix} Z_{11} + Z_{g} & Z_{12} \\ Z_{21} & Z_{22} \end{vmatrix}} = \frac{Z_{11} + Z_{g}}{\left(Z_{11} + Z_{g}\right)Z_{22} - Z_{12}Z_{21}} V_{2} \Rightarrow Z_{g} = Z_{22} - \frac{Z_{12}Z_{21}}{Z_{11} + Z_{g}}$$

> Thevenin voltage is found as:

$$\begin{aligned} & \underbrace{\mathcal{V}_{\text{1}} = \mathcal{Z}_{\text{11}} I_{\text{1}} + \mathcal{Z}_{\text{12}} \times \textcolor{red}{\textcolor{blue}{\textbf{0}}} = \mathcal{V}_{\text{g}} - \mathcal{Z}_{\text{g}} I_{\text{1}} \Rightarrow \left(\mathcal{Z}_{\text{11}} + \mathcal{Z}_{\text{g}}\right) I_{\text{1}} = \mathcal{V}_{\text{g}}} \\ & \underbrace{\mathcal{V}_{\text{2}} = \mathcal{Z}_{\text{21}} I_{\text{1}} + \mathcal{Z}_{\text{22}} \times \textcolor{blue}{\textbf{0}}}_{\text{Q}} \Rightarrow \mathcal{V}_{\text{2}} = \mathcal{Z}_{\text{21}} I_{\text{1}} \end{aligned}} \Rightarrow \mathcal{V}_{\text{th}} = \frac{\mathcal{Z}_{\text{21}}}{\mathcal{Z}_{\text{11}} + \mathcal{Z}_{\text{g}}} \mathcal{V}_{\text{g}}$$

The Current and Voltage Gains

> The current gain is easily found from:

$$\mathcal{V}_{2} = Z_{21}I_{1} + Z_{22}I_{2} = -Z_{L}I_{2} \Rightarrow Z_{21}I_{1} + (Z_{22} + Z_{L})I_{2} = 0 \Rightarrow \frac{I_{2}}{I_{1}} = -\frac{Z_{21}}{Z_{22} + Z_{L}}$$

> To find the voltage gain, we recall that:

$$\mathcal{V}_1 = Z_{\text{in}}I_1 = \left(Z_{11} - \frac{Z_{12}Z_{21}}{Z_{22} + Z_{L}}\right)I_1$$
 and $\mathcal{V}_2 = -Z_{L}I_2$

> Using the current gain derived above, we find:

$$\frac{\mathcal{V}_2}{\mathcal{V}_1} = \frac{-Z_L I_2}{Z_{\text{in}} I_1} = \frac{-Z_L}{Z_{11} - \frac{Z_{12} Z_{21}}{Z_{22} + Z_L}} \frac{-Z_{21}}{Z_{22} + Z_L} = \frac{Z_{21} Z_L}{Z_{11} (Z_{22} + Z_L) - Z_{12} Z_{21}}$$

27

Source to Output Voltage Gain

> Recall the expression of the output current:

$$I_{2} = -\frac{Z_{12}}{\left(Z_{11} + Z_{g}\right)\left(Z_{22} + Z_{L}\right) - Z_{12}Z_{21}} \mathcal{V}_{g}$$

➤ Using the relation of the output voltage to output current, we obtain the source to output voltage gain:

$$\mathcal{V}_{2} = -Z_{L}I_{2} \Rightarrow \frac{\mathcal{V}_{2}}{\mathcal{V}_{g}} = \frac{Z_{12}Z_{L}}{(Z_{11} + Z_{g})(Z_{22} + Z_{L}) - Z_{12}Z_{21}}$$

➤ Similar derivations can be performed for other twoport parameters (see Table 18.2 of the textbook).

Interconnected Two-Port Circuits

> Two-port circuits may be interconnected in five ways.

29

Cascade Connection

➤ The transmission parameters can be obtained by simple matrix multiplication:

$$\begin{bmatrix} \mathcal{V}_{1} \\ I_{1} \end{bmatrix} = \begin{bmatrix} a'_{11} & a'_{12} \\ a'_{21} & a'_{22} \end{bmatrix} \begin{bmatrix} \mathcal{V}_{2}' \\ -I'_{2} \end{bmatrix} \qquad \begin{bmatrix} \mathcal{V}_{1}' \\ I'_{1} \end{bmatrix} = \begin{bmatrix} a''_{11} & a''_{12} \\ a''_{21} & a''_{22} \end{bmatrix} \begin{bmatrix} \mathcal{V}_{2} \\ -I_{2} \end{bmatrix}$$
$$\begin{bmatrix} \mathcal{V}_{1} \\ I_{1} \end{bmatrix} = \begin{bmatrix} a'_{11} & a'_{12} \\ a'_{21} & a'_{22} \end{bmatrix} \begin{bmatrix} a''_{11} & a''_{12} \\ a''_{21} & a''_{22} \end{bmatrix} \begin{bmatrix} \mathcal{V}_{2} \\ -I_{2} \end{bmatrix}$$