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 Phasor analysis can be generalized for linear circuits
with damped-sinusoidal sources:

 The new ingredient  (nepers per sec.) is called the
damping factor and also as the neper frequency.

 The complex frequency is then defined as:

 The steady-state response of a linear circuit with
damped-sinusoidal sources is also damped-sinusoidal
with the same complex frequency.

Complex Frequency
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 The relation between voltage and current is
expressed in the complex frequency domain again as:

 Differentiation  multiplication with s in s-domain:

 The impedance and admittances of basic circuit
elements are hence obtained in this case as:

Impedance and Admittances
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   Z s / Y s V I I

Element Impedance (Z) Admittance (Y)

Resistor R 1/R

Inductor sL 1/(sL)

Capacitor 1/(sC) sC

       j jst s
m m

tx t e e x t X e eX s    ;  Re Re

 The impedance seen by the source is:

 The output voltage is related to the source voltage as:

 Functions of this form are called transfer functions.

Example: Circuit Analysis in s Domain
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 The output is obtained in the s-domain as:

 The forced response of the output is obtained as:

 Remark: The complete output response is obtained
by adding the natural response.

Example: Circuit Analysis in s Domain
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 Linear time-invariant circuits are described by
differential equations of the form:

 Damped-sinusoidal inputs lead to damped-sinusoidal
outputs of the same frequency in steady-state:

 The transfer function from vi to vo is defined as:

Transfer Functions
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 The zeros of a transfer function H(s) are the values
zi for which H(zi) = 0.

 The poles of a transfer function H(s) are the values
pi for which H(pi) = .

 Rigorous definitions are in terms of limits !

 A transfer function can then be expressed as:

 For real-valued coefficients, the complex-valued
poles/zeros appear as conjugate pairs.

 Poles that are not repeated are called simple.

Poles and Zeros
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 Pole-Zero plot is the depiction of poles as X and
zeros as O in the complex number plane (or s-plane).

 Example:PZ plot of the transfer function from vi to vL

Pole-Zero Plot
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 KCL at A:

 KCL at B:

 Transfer function from v1 to v2:

Example: An Op-Amp Circuit
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 Consider the example circuit we have seen before:

 Observe the same poles in all the transfer functions!
 Provided that one portion of the circuit is not

separated physically from the other, all transfer
functions defined for it will have common poles.

 The poles determine natural response of a circuit and
are hence also called natural frequencies.

Poles and The Natural Response
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 Consider a damped sinusoidal (voltage or current)
input to a linear time-invariant circuit:

 Any resulting voltage/current can be expressed as:

 The forced response is also damped-sinusoidal of the
same (complex) frequency and is given by:

where H(s) is the transfer function from u to y.

 The natural response is determined by the poles of
the transfer function H(s) and the initial conditions.

Complete Response of a Linear Circuit
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 Consider a transfer function with simple poles:

 The natural response of the output is of the form:

where Ai’s are constants that are to be determined
based on the initial conditions.

 When all poles are distinct except pi=pi+1== pi+k-1:

Natural Response of a Linear Circuit
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 Distinct real poles lead to responses in the form of
exponential decay, exponential increase or constant
response in time.

Natural Response: Distinct Real Poles
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 Distinct complex conjugate poles lead to oscillatory
responses with exponentially decaying, exponentially
increasing or constant amplitudes.

Natural Response:Distinct ComplexPoles
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 The transfer function from vi to vC is given by:

 The poles of this transfer function are given by:

Recap: Series RLC Circuit
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 Over-damped:  > n

 Critically-damped:  = n

 Under-damped:  < n

Response of a Series RLC Circuit
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 Frequency response is obtained by replacing swith j:

 Magnitude response:

 Phase response:

 Can be determined graphically by drawing the vectors
j  zi and j  pj in the s-plane.

Graphical Frequency Response Analysis
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 Find H(j) for  = 2:

 Magnitude response:

 Phase response:

 Bode plots display the responses in logarithmic scales
and are rather easy to sketch.

Example: Graphical Frequency Response
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