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Complex Frequency

» Phasor analysis can be generalized for linear circuits
with damped-sinusoidal sources:

x(t)=X,e" cos(ot +¢)
P{X,e"cos(ot +0)} = X, x(t)= %{Xmeﬁ’ el +j‘“”}
» The new ingredient « (nepers per sec.) is called the
damping factor and also as the neper frequency.
» The complex frequency is then defined as:
S=0+ jo

» The steady-state response of a linear circuit with
damped-sinusoidal sources is also damped-sinusoidal

with the same comﬁlex freﬂuenc‘.




Impedance and Admittances

» The relation between voltage and current is
expressed in the complex frequency domain again as:

V=Z(s)I=I/Y(s)
» Differentiation <> multiplication with s in s-domain:
x(t)= %{Xmef"’ ‘e“}; x(t)= Qba{s)(mej‘b ~e“}

» The impedance and admittances of basic circuit
elements are hence obtained in this case as:

Element Impedance (2) Admittance ()
Resistor R 1/R
Inductor sL 1/(sL)
Capacitor 1/(sO sC

—

Example: Circuit Analysis in s Domain
I

G 3.

» The impedance seen by the source is:

1
Z(S)=S£+w:.§£+ R
R +1/(sC) SRC +1
» The outputvoltage is related to the source voltage as:
R 1
H(S):"V(,(S):sﬂcuz 1£C .
Vi) Z(s) e, 1 T
RC  LC

» Functions of this form are called transfer functions.

—




Example: Circuit Anal)ésHis in s Domain

* ST L l +
=F
v, = 4e sin(2t) z |—> 49% 4T v,

» The output is obtained in the s-domain as:

2 -1 =5 iz
= e 2=—¢ 4 .4e 2 =22e"
SP4Ss+2 40 T A2

H (-1+2j)
» The forced response of the output is obtained as:

v, (t) = %{Zﬁeﬂ? ‘e(fl+2j)t} = 22¢t COS(Zt-&-%j

» Remark: The complete output response is obtained
by adding the natural response.

ﬁ

Transfer Functions

» Linear time-invariant circuits are described by
differential equations of the form:
d"v, a"ty dv d™ dv,

o4, 2t A2+ AV, =D, L+ + b+ BV,
n d‘tn n-1 d‘tn,fl a’l d‘t 0 Yo m d'tm, 1 d‘t 0Vi

» Damped-sinusoidal inputs lead to damped-sinusoidal
outputs of the same frequency in steady-state:

a

vi(t)="Ve' = v, (t)="Ve"
(a,s" +a, ,s" ++as+ay) Vet =(b,5" +b,, "+ + b5+ b,) Ve
» The transfer function from v, to v, is defined as:

Ve N(s) b,s"+b, s""+--+bs+h,
Ve  D(s) a,s"+a

H (s)

n-1
sS"t+e+as+a,

n-1

ﬁ




Poles and Zeros

> The zeros of a transfer function H(s) are the values
z; for which #H(z,)) = 0.

> The poles of a transfer function H(s) are the values
p; for which H(p,) = «.
» Rigorous definitions are in terms of limits !
» A transfer function can then be expressed as:
H(s)=k (S_Zl)"'(s_zm,)
(s=p1)-(s=pu)
» For real-valued coefficients, the complex-valued

poles/zeros appear as conjugate pairs.
» Poles that are not repeated are called simple.

—

Pole-Zero Plot

» Pole-Zero plot is the depiction of poles as X and
zeros as O in the complex number plane (or s-plane).

> Example:PZ plot of the transfer function from v; to v,

+ v, — fu
2 H oo 1
L d AR 1 3
v, 4034 .
Voo os(s+1 i
}[(S):VT: 52(+5+)2 I
B s(s+1) -

(s+05+ j0.5V7)(s+05- j0.57)

—




Example: An Op-Amp Circuit

> KCLat A: V- Vs s Vo sy s (542) Y, = %ok

> KCL at B: V, =-§v2

» Transfer function from v, to v,:
v, 8 8

v, _52+25+4:_(S+1+j\/§)(5+1—j\/§)

—

Poles and The Natural Response

+ YV —
2

 — =+
i lli
v, 40 4T v,

» Consider the example circuit we have seen before:
V(s)  s(s+1)  V.(s) _ 2 I (s) 05(s+1)
Vi(s) sP+s+2° V(s) sP+s+2° V(s) sP+s+2
» Observe the same poles in all the transfer functions!
» Provided that one portion of the circuit is not
separated physically from the other, all transfer
functions defined for it will have common poles.
» The poles determine natural response of a circuit and
are hence also called natural frequencies.

ﬁ




Complete Response of a Linear Circuit

» Consider a damped sinusoidal (voltage or current)
input to a linear time-invariant circuit:
u(t)=U-e", U=|ue”"
» Any resulting voltage/current can be expressed as:
V()= Yult) + Yo(t)

— —
Natural Response Forced Response

» The forced response is also damped-sinusoidal of the
same (complex) frequency and is given by:

Vo (t)=H (s)U-e”, if s is not equal to a pole of H
where F(s) is the transfer function from u to v.

» The natural response is determined by the poles of
the transfer function #(s) and the initial conditions.

—

Natural Response of a Linear Circuit

» Consider a transfer function with simple poles:
N(s) R(s-—z)-(s-2z,) ) o
H(s)= = ,M<N; p# 2z, Vi i# ] £ P,
ST B o ) R R

» The natural response of the output is of the form:

Voo (£) = AP 400t A ™
where “A’s are constants that are to be determined
based on the initial conditions.

> When all poles are distinct except p=p;,1=...= Pi.1:
Yh (t) = “/leeplt ot leiflep'?lt + (JZL + J’Zlmt +oeet j‘w‘+k71tkil)e‘p't

+.A+kepl+kt +..‘+Aeﬁnt

ﬁ




Natural Response: Distinct Real Poles

’ . ”
Jo, Vi /
- A,L

=
P | ot I ﬁ

!

Yo
plane /
A;
ot I =

Yha

Jo /
s-plane
7 —
—_—
-4 [

» Distinct real poles lead to responses in the form of
exponential decay, exponential increase or constant
response in time.

ﬁ

Natural Response:Distinct ComplexPoles

[\‘j\ fﬂu | \

1

UIUIU

» Distinct complex conjugate poles lead to oscillatory
responses with exponentially decaying, exponentially
increasing or constant amplitudes.

ﬁ




Recap: Series RLC Circuit

» The transfer function from v; to v, is given by:
V. o’ 1 R

H(s)=deo O o -1 R
(5) Vo os?+ 208+ o G NLC * 2L

» The poles of this transfer function are given by:

2 2
P = —o+4o — o)
2 2
P, = —o—4o° —o;

ﬁ

Response of a Series RLC Circuit

H(S):l—m—i ®, = 1 ,OL=£

V _52+2as+m§'

» Over-damped: a > o,

Ve (£) =vE () + Ae™ + Ae™
» Critically-damped: o = o,

Ve (1) =ve (£) + (A + At) e’

» Under-damped: o < o,
Ve (t) = v () + Be cos(agt + ),

where o, = \Jo? —o?, B=2|A, ¢ = LA,




Graphical Frequency Response Analysis

» Frequency response is obtained by replacing swith jo:

a1 85m2)(5=20) _ gpiy_ g J0=2)(Jo=-2,)

O p G p) = o (o )
» Magnitude response:

_|/é|gv1...j\f

m

|9 (jo) DD, where N, = |jo-z|, D, =| jo - p)|

» Phase response:
LI (jo) =g+ + b — 6, -~ B,
where ¢, = ZR, ¢, = £(jo—-2z), 6, = L(J’m_Jgj)

» Can be determined graphically by drawing the vectors
Jo — z;and jo — pj; in the s-plane.

—

Example: Graphical Frequency Response
> Find H(jo) for o = 2:

_ A(s+2) 4(s+2)
}[(S)_52+25+5_(S+1—2j)(s+1+2j)
» Magnitude response: 140
4242 8 o
2 (27 = - ° Ra~27 2\/5445}_
|54 () 1417 17\/_ 2 s |

> Phase response: y =4
| [V17276°

£H (2f)=0"+45" -0 -76" =31 s Bl
|
» Bode plots display the responses in logarithmic scales
and are rather easy to sketch.
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