Chapter 5 Signal Space Analysis

Dr. Samir Alghadhban

.

Objective

- Geometric representation of signals with finite energy, which provides a mathematically elegant and highly insightful tool for the study of data transmission.
- Maximum likelihood procedure for the detection of a signal in AWGN channel.
- Derivation of the correlation receiver that is equivalent to the matched filter receiver discussed in the previous chapter.
- Probability of symbol error and the union bound for its approximate calculation.

Content

- 5.1 Introduction
- 5.2 Geometric Representation of Signals
- 5.3 Conversion of the Continuous AWGN Channel into a Vector Channel
- 5.4 Likelihood Functions
- 5.5 Coherent Detection of Signals in Noise: Maximum Likelihood Decoding
- 5.6 Correlation Receiver
- 5.7 Probability of Error

3

5.1 Introduction

- A message source emits one symbol every T seconds, with the symbols belonging to an alphabet of M symbols denoted by $m_{1,}$ m_{2},\ldots,m_{M}
- A priori probabilities p_1, p_2, \ldots, p_M specify the message source output probabilities.
- If the M symbols of the alphabet are *equally likely,* we may express the probability that symbol *m,* is emitted by the source as:

$$p_i = P(m_i)$$

= $\frac{1}{M}$ for $i = 1, 2, ..., M$

5.1 Introduction

- The transmitter takes the message source output m, and codes it into a *distinct* signal $s_i(t)$ suitable for transmission over the channel.
- The signal $s_i(t)$ occupies the full duration T allotted to symbol m.
- Most important, $s_t(t)$ is a real-valued *energy signal* (i.e., a signal with finite energy), as shown by:

$$E_i = \int_0^T s_i^2(t) dt$$
, $i = 1, 2, ..., M$

5

5.1 Introduction

The channel is assumed to have two characteristics:

- 1. The channel is *linear*, with a bandwidth that is wide enough to accommodate the transmission of signal s_i(t) with negligible or no distortion.
- 2. The channel noise, *w*(*t*), is the sample function of a *zero-mean white Gaussian noise process*.

We refer to such a channel as an **additive white Gaussian noise** (AWGN) **channel**. Accordingly, we may express the **received signal** x(t) as Transmitted

$$x(t) = s_i(t) + w(t), \qquad \begin{cases} 0 \le t \le T \\ i = 1, 2, \ldots, M \end{cases}$$

Transmitted Received signal signal x(t) + Σ x(t) + Σ White Gaussian noise w(t)

5.1 Introduction

- The receiver has the task of observing the received signal x(t) for a
 duration of T seconds and making a best estimate of the transmitted signal
 s_i(t) or, equivalently, the symbol m_i.
- However, owing to the presence of channel noise, this decision-making process is statistical in nature, with the result that the receiver will make occasional errors.
- The requirement is therefore to design the receiver so as to minimize the average probability of symbol error, defined as:

$$P_e = \sum_{i=1}^M p_i P\Big(\hat{m}
eq m_i \Big| m_i\Big)$$
 , where p_i is the priori probability $P\Big(\hat{m}
eq m_i \Big| m_i\Big)$. Is the conditional probability,

Detection Errors Example

5.2 Geometric Representation of Signals

The essence of geometric representation of signals is to represent any set of M energy signals $\{s_i(t)\}$ as linear combinations of N orthonormal basis functions, where $N \le M$.

That is to say, given a set of real-valued energy signals $s_1(t)$, $s_2(t)$, ..., $s_M(t)$, each of duration T seconds, we write

$$s_i(t) = \sum_{j=1}^N s_{ij}\phi_j(t), \qquad \begin{cases} 0 \le t \le T \\ i = 1, 2, \dots, M \end{cases}$$

Where the coefficients of the expansion are defined by:

$$s_{ij} = \int_0^T s_i(t)\phi_j(t) dt, \qquad \begin{cases} i = 1, 2, \dots, M \\ j = 1, 2, \dots, N \end{cases}$$

The real-valued basis function are orthonormal

$$\int_0^T \phi_i(t)\phi_j(t) dt = \delta_{ij} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$$

5.2 Geometric Representation of Signals

The set of coefficients may naturally be viewed as an N-dimensional vector, denoted by s_i. The important point to note here is that the vector s_i bears a one-to-one relationship with the transmitted signal s_i(t):

$$s_{i}(t) = \sum_{j=1}^{N} s_{ij}\phi_{j}(t), \qquad \begin{cases} 0 \le t \le T \\ i = 1, 2, \dots, 1 \end{cases}$$

$$s_{i} \xrightarrow{s_{i}} \xrightarrow{s_{i}(t)} \sum_{t_{i}(t)} s_{i}(t)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$s_{iN} \xrightarrow{s_{iN}} \sum_{t_{iN}(t)} s_{i}(t)$$
Synthesizer

5.2 Geometric Representation of Signals

• **Signal Vector:** We may state that each signal is completely determined by the *vector* of its coefficients

$$\mathbf{s}_i = \begin{bmatrix} s_{i1} \\ s_{i2} \\ \vdots \\ \vdots \\ s_{in} \end{bmatrix}, \quad i = 1, 2, \dots, M$$

• Signal Space: The N-Dimensional Euclidean space is called the signal space

5.2 Geometric Representation of Signals

- Length: In an N-dimensional Euclidean space, it is customary to denote the length (also called the *absolute value* or *norm*) of a signal vector $\mathbf{s_i}$ by the symbol $\left\|\mathbf{s_i}\right\|$
- Squared-Length: The squared-length of any signal vector s_i is defined to be the *inner* product or dot product of s_i, with itself, as shown by:

 $\| \mathbf{s}_i \|^2 = \mathbf{s}_i^T \mathbf{s}_i$ = $\sum_{i=1}^{N} s_{ij}^2$, i = 1, 2, ..., M

5.2 Geometric Representation of Signals

• Squared Euclidean Distance:

$$\|\mathbf{s}_{i} - \mathbf{s}_{k}\|^{2} = \sum_{j=1}^{N} (s_{ij} - s_{kj})^{2}$$

= $\int_{0}^{T} (s_{i}(t) - s_{k}(t))^{2} dt$

Angle θ_{ik} between two signal vectors s_i and s_k

$$\cos \theta_{ik} = \frac{\mathbf{s}_{i}^{\mathsf{T}} \mathbf{s}_{k}}{\| \mathbf{s}_{i} \| \| \mathbf{s}_{k} \|}$$

• The two vectors $\mathbf{s_i}$ and $\mathbf{s_k}$ are *orthogonal* or *perpendicular* to each other if their inner product $\mathbf{s_i}^\mathsf{T}\mathbf{s_k}$ is zero, in which case $\theta_{ik} = 90$ degrees.

5.2 Geometric Representation of Signals

There is an interesting relationship between the energy content of a signal and its representation as a vector.

 $s_i = \sum_{j=1}^{N} s_{ij}^2$ Signal energy is equal to its inner product or squared-length

Proof:

$$E_i = \int_0^T s_i^2(t) \ dt$$

$$E_i = \int_0^T \left[\sum_{j=1}^N s_{ij} \phi_j(t) \right] \left[\sum_{k=1}^N s_{ik} \phi_k(t) \right] dt$$

$$E_{i} = \sum_{i=1}^{N} \sum_{k=1}^{N} s_{ij} s_{ik} \int_{0}^{T} \phi_{j}(t) \phi_{k}(t) dt$$

$$E_i = \sum_{j=1}^{N} s_{ij}^2$$
$$= \| \mathbf{s}_i \|^2$$

5.2 Example 1/3

• Find a set of orthonormal basis function for the following

Solution:

15

5.2 Example 2/3

- Find the signal vector of the four signals $s_1=(1\ ,-0.5)\ , \, s_2=(-0.5,\ 1),\, s_3=(0,\ -1),\, s_4=(0.5,\ 1)$
- Represent these signals geometrically in the vector space

1 1 1 1 1 1 2 j ++

5.2 Example 3/3

• Find the energy of signals s₁(t) and s₄(t)

$$E_1 = ||s_1||^2 = 1^2 + (-0.5)^2 = 1.25$$

 $E_4 = ||s_4||^2 = (0.5)^2 + 1^2 = 1.25$

• Find the Squared Euclidean Distance between s₁(t) and s₄(t)

$$d_{14}^{2} = ||s_{1} - s_{4}||^{2}$$

$$= (1 - 0.5)^{2} + (-0.5 - 1)^{2}$$

$$= 0.25 + 2.25 = 2.5$$

• Find the angle between s₁(t) and s₄(t)

$$\cos\theta_{14} = \frac{S_1^T S_4}{\|S_1\| \|S_4\|} = 0 \quad \Rightarrow \theta_{14} = 90^{\circ} \quad \text{Thus, s}_1(t) \text{ and s}_2(t) \text{ are orthogonal}$$

17

Gram-Schmidt Orthogonalization Procedure

Gram-Schmidt orthogonalization procedure provides a complete orthonormal set of basis functions.

- Suppose we have a set of M energy signals denoted by $s_1(t)$, $s_2(t)$, ..., $s_M(t)$.
- Starting with s₁(t) chosen from this set arbitrarily, the first basis function is defined by:

$$\phi_1(t) = \frac{s_1(t)}{\sqrt{E_1}}$$

• Where E_1 is the energy of the signal $s_1(t)$. Then, clearly, we have

$$s_1(t) = \sqrt{E_1}\phi_1(t)$$
$$= s_{11}\phi_1(t)$$

Gram-Schmidt Orthogonalization Procedure

• Next, using the signal $s_2(t)$, we define the coefficient s_{21} as

$$s_{21} = \int_0^T s_2(t)\phi_1(t)dt$$
 The projection of $s_2(t)$ into the basis $\Phi_1(t)$

• We may thus introduce a new intermediate function

$$g_2(t) = s_2(t) - s_{21}\phi_1(t)$$
 Subtract th

Subtract the contribution of the first basis from $s_2(t)$

- Note that $g_2(t)$ is orthogonal to $\Phi_1(t)$
- Now, we are ready to define the second basis function as:

$$\phi_2(t) = \frac{g_2(t)}{\sqrt{\int_0^T g_2^2(t)dt}} = \frac{s_2(t) - s_{21}\phi_1(t)}{\sqrt{E_2 - s_{21}^2}}$$

10

Gram-Schmidt Orthogonalization Procedure

• Continuing in this fashion, we may in general define

$$g_i(t) = s_i(t) - \sum_{j=1}^{i-1} s_{ij}\phi_j(t)$$

• Where $s_{ij} = \int_0^T s_i(t)\phi_j(t)dt, \quad j = 1, 2, ..., i-1$

• The basis function are

$$\phi_i(t) = \frac{g_i(t)}{\sqrt{\int_0^T g_i^2(t)dt}}, \quad i = 1, 2, ..., N$$

 The dimension N is less than or equal to the number of given signals, M, depending on whether the signals are linearly independent or not.

10/28/13

Gram-Schmidt Orthogonalization Procedure: Example

21

Example: Step 1

$$E_{1} = \int_{-\infty}^{\infty} |s_{1}(t)|^{2} dt = 2$$

$$f_{1}(t) = \frac{s_{1}(t)}{\sqrt{E_{1}}} = \frac{s_{1}(t)}{\sqrt{2}}$$

$$1/\sqrt{2}$$

$$1/\sqrt{2}$$

$$1/\sqrt{2}$$

10/28/13

Example: Step 2

$$c_{12} = \int_{-\infty}^{\infty} f_1(t) s_2(t) dt = 0$$

$$f_2'(t) = s_2(t) - c_{12} f_1(t) = s_2(t)$$

$$E_2 = \int_{-\infty}^{\infty} |s_2(t)|^2 dt = 2$$

$$f_2(t) = \frac{s_2(t)}{\sqrt{E_2}} = \frac{s_2(t)}{\sqrt{2}}$$

$$-1/\sqrt{2}$$

23

Example: Step 3

$$c_{13} = \int_{-\infty}^{\infty} f_1(t)s_3(t)dt = 0$$

$$c_{23} = \int_{-\infty}^{\infty} f_2(t)s_3(t)dt = -\sqrt{2}$$

$$f_3'(t) = s_3(t) - c_{13}f_1(t) - c_{23}f_2(t)$$

$$= s_3(t) + \sqrt{2}f_2(t) = 0$$

• No new basis function

Example: Step 4

$$c_{14} = \int_{-\infty}^{\infty} f_1(t) s_4(t) dt = -\sqrt{2}$$

$$c_{24} = \int_{-\infty}^{\infty} f_2(t) s_4(t) dt = 0$$

$$f_4'(t) = s_4(t) - c_{14} f_1(t) - c_{24} f_2(t)$$

$$= s_4(t) + \sqrt{2} f_1(t) = 0$$

• No new basis function. Procedure Complete

2 -

Signal Constellation Diagram

5.3 Conversion of the Continuous AWGN Channel into a Vector Channel

 Suppose that the input to the bank of N product integrators or correlators is the received signal x(t) defined as:

$$x(t) = s_i(t) + w(t), \qquad \begin{cases} 0 \le t \le T \\ i = 1, 2, \ldots, N \end{cases}$$

- where w(t) is a sample function of a white Gaussian noise process W(t) of zero mean and power spectral density N₀/2.
- the output of correlator j is the sample value of a random variable X_i

5.3 Conversion of the Continuous AWGN Channel into a Vector Channel

 Each correlator output X_j is a Gaussian random variable with mean s_{ij} and variance N_o/2. (see the proof in section 5.3 in textbook)

$$f_{X_i}(x_i|m_i) = \frac{1}{\sqrt{\pi N_0}} \exp \left[-\frac{1}{N_0} (x_i - s_{ij})^2 \right], \quad j = 1, 2, ..., M$$

- Also the correlator output X_j are mutually uncorrelated and therefore they are statistically independent.
- Thus, the joint conditional pdf of the observation vector X of length N is:

$$f_{\mathbf{X}}(\mathbf{x}|m_i) = (\pi N_0)^{-N/2} \exp \left[-\frac{1}{N_0} \sum_{i=1}^{N} (x_i - s_{ij})^2 \right], \quad i = 1, 2, ..., M$$

5.4 Likelihood Functions

- At the receiver, we are given the observation vector **x** and the requirement is to estimate the message symbol m; that is responsible for generating **x**.
- We introduce the *likelihood function*, denoted by *L(m_i)*

$$L(m_i) = f_{\mathbf{X}}(\mathbf{x} \mid m_i), \qquad i = 1, 2, \ldots, M$$

 In practice, we find it more convenient to work with the loglikelihood function, denoted by l(m_i)

$$l(m_i) = \log L(m_i), \quad i = 1, 2, \ldots, M$$

 For the observation vector x over AWGN channels, the loglikelihood functions are:

$$l(m_i) = -\frac{1}{N_0} \sum_{j=1}^{N} (x_j - s_{ij})^2, \quad i = 1, 2, ..., M$$

Squared Euclidean Distance

20

5.5 Coherent Detection of Signals in Noise

Signal Detection Problem:

Given the observation vector \mathbf{x} , perform a mapping from \mathbf{x} to an estimate \hat{m} of the transmitted symbol, m_i , in a way that would minimize the probability of error in the decision-making process.

5.5 Maximum a posteriori probability rule

Probability of error

• Suppose that, given the observation vector x, we make the decision $\hat{m} = m_i$. The probability of error in this decision, which we denote by $P_e(m_i|\mathbf{x})$, is simply

$$P_e(m_i | \mathbf{x}) = P(m_i \text{ not sent } | \mathbf{x})$$

= 1 — $P(m_i \text{ sent } | \mathbf{x})$

Optimum decision rule

The maximum a posteriori probability (MAP) rule is:

$$\begin{array}{ccc} \mathrm{Set}\; \hat{m} &= m_i \; \mathrm{if} \\ P(m_i \; \mathrm{sent} \, | \, \mathbf{x}) &\geq P(m_k \; \mathrm{sent} \, | \, \mathbf{x}) & \text{for all } k \neq i \end{array}$$

Using Bayes' rule, the MAP rule becomes:

Set
$$\hat{m} = m_i$$
 if
$$\frac{p_k f_{\mathbf{X}}(\mathbf{x} \mid m_k)}{f_{\mathbf{X}}(\mathbf{x})}$$
 is maximum for $k = i$

31

5.5 MAP rule

• The MAP rule is:

Set
$$\hat{m} = m_i$$
 if $\frac{p_k f_{\mathbf{x}}(\mathbf{x} | m_k)}{f_{\mathbf{x}}(\mathbf{x})}$ is maximum for $k = i$

- Where
 - whete p_k is the *a priori* probability of transmitting symbol m_k
 - $-f_x(\mathbf{x} \mid m_k)$ is the conditional probability density function of the random observation vectot \mathbf{X} given the transmission of symbol m_k
 - and $f_x(\mathbf{x})$ is the unconditional probability density function of \mathbf{X} .
- Note that
 - The denominator term $f_{x}(\mathbf{x})$ is independent of the transmitted symbol.
 - The *a priori* probability $p_k = p_i$ when all the source symbols are transmitted with equal probability.
 - The conditional probability density function $f_x(\mathbf{x} \mid m_k)$ bears a one-to-one relationship to the log-likelihood function $l(m_k)$.

5.5 Maximum likelihood (ML) rule

• Thus, for equally probable symbols, the MAP rule becomes equivalent to the Maximum likelihood (ML) rule such as:

$$l(m_k) \text{ is maximum for } k = i$$

$$l(m_k) \text{ is maximum for } k = i$$

$$l(m_k) \text{ is maximum for } k = i$$

$$l(m_k) \text{ is the log-likelihood function}$$

$$l(m_k) \text{ is maximum for } k = i$$

$$l(m_k) \text{ is the log-likelihood function}$$

$$l(m_k) \text{ is$$

5.5 Graphical Interpretation of MLD rule

- Let Z denote the N-dimensional space of all possible obsetvation vectors x.
- We refer to this space as the *observation* space.
- Because we have assumed that the decision rule must say $\hat{m}=m_i$ where i = 1,2,..., M, the total observation space Z is correspondingly partitioned into *M-decision regions*, denoted by Z₁, Z₂,..., Z_M.
- Accordingly, we may restate the ML decision rule of as follows:

Observation vector x lies in region Z_i if $I(m_k)$ is maximum for k = i

5.5 MLD rule for AWGN channels

· Recall that for AWGN channels,

$$l(m_i) = -\frac{1}{N_0} \sum_{i=1}^{N} (x_i - s_{ij})^2, \quad i = 1, 2, ..., M$$

- Note that $l(m_k)$ attains its maximum value when the summation term is minimized.
- Therefore, the MLD rule for AWGN channels is to minimize the squared-Euclidian distance

Observation vector \mathbf{x} lies in region Z_i if $\sum_{j=1}^N (x_j - s_{kj})^2 \text{ is minimum for } k = i \qquad \text{Where} \qquad \sum_{j=1}^N (x_j - s_{kj})^2 = \| \mathbf{x} - s_k \|^2$

Observation vector \mathbf{x} lies in region Z_i if the Euclidean distance $\|\mathbf{x} - \mathbf{s}_k\|$ is minimum for k = i

For equally likely signals, the maximum likelihood decision rule is simply to choose the message point closest to the received signal point

5.5 MLD rule for AWGN channels

• The squared Euclidean distance could be expanded as:

$$\sum_{j=1}^{N} (x_j - s_{kj})^2 = \sum_{j=1}^{N} x_j^2 - 2 \sum_{j=1}^{N} x_j s_{kj} + \sum_{j=1}^{N} s_{kj}^2$$

- The first summation term of this expansion is independent of the index k and may therefore be ignored.
- The second summation term is the inner product of the observation vector \mathbf{x} and signal vector \mathbf{s}_k .
- The third summation term is the energy of the transmitted signal $s_{\nu}(t)$
- · Therefore, the MLD rule becomes

Observation vector \mathbf{x} lies in region Z_i if $\sum_{j=1}^{N} x_j s_{kj} - \frac{1}{2} E_k \text{ is maximum for } k = i$

5.7 Probability of Error

- Suppose also that symbol m_i is transmitted, an error occurs whenever the received signal point does not fall inside region Z_i
- Averaging over all possible transmitted symbols, we readily see that the average probability of symbol error, P_e is

$$P_e = \sum_{i=1}^{M} p_i P(\mathbf{x} \text{ does not lie in } Z_i | m_i \text{ sent})$$

$$= \frac{1}{M} \sum_{i=1}^{M} P(\mathbf{x} \text{ does not lie in } Z_i | m_i \text{ sent})$$

$$= 1 - \frac{1}{M} \sum_{i=1}^{M} P(\mathbf{x} \text{ lies in } Z_i | m_i \text{ sent})$$

$$P_e = 1 - \frac{1}{M} \sum_{i=1}^{M} \int_{Z_i} f_{\mathbf{X}}(\mathbf{x} \mid m_i) \ d\mathbf{x}$$

5.7 Invariance of the Probability of Error to Rotation and Translation

- Changes in the orientation of the signal constellation with respect to both the coordinate axes and origin of the signal space do *not* affect the probability of symbol error P_e
- This result is a consequence of two facts
 - $-\,$ In maximum likelihood detection, the probability of symbol error P_e depends solely on the relative Euclidean distances between the message points in the constellation.

 The additive white Gaussian noise is spherically symmetric in all directions in the signal space.

5.7 Invariance of the Probability of Error to Rotation and Translation

• Suppose all the message points in a signal constellation are translated by a constant vector amount **a**

$$s_{i,\text{translate}} = s_i - a, \quad i = 1, 2, \ldots, M$$

- The observation vector is correspondingly translated by the same vector amount
 x_{model} = x a
- Then, $\|\mathbf{x}_{translate} \mathbf{s}_{i,translate}\| = \|\mathbf{x} \mathbf{s}_i\|$ for all i

If a signal constellation is translated by a constant vector amount, then the probability of symbol error $P_{\rm e}$ incurred in maximum likelihood signal detection over an AWGN channel is completely unchanged.

5.7 Minimum Energy Signals

Given a signal constellation $\left\{\mathbf{s}_i\right\}_{i=1}^M$, the corresponding signal constellation with minimum average energy is obtained by subtracting from each signal vector \mathbf{s}_i in the given constellation an amount equal to the constant vector $\mathbf{E}[\mathbf{s}]$,

Where
$$E[\mathbf{s}] = \sum_{i=1}^{M} \mathbf{s}_i p_i$$

Thus the minimum translate vector is $\mathbf{a}_{min} = E[\mathbf{s}]$ and the minimum energy of the translated signal constellation is

$$\mathscr{E}_{translate,min} = \mathscr{E} - \parallel a_{min} \parallel^2$$

5.7 Minimum Energy Signals

Proof:

The average energy of this signal constellation translated by vector amount **a** is:

$$\mathcal{E}_{\text{translate}} = \sum_{i=1}^{M} \| \mathbf{s}_i - \mathbf{a} \|^2 p_i$$

The squared Euclidean distance between \mathbf{s}_{i} and \mathbf{a} is expanded as:

$$\| \mathbf{s}_{i} - \mathbf{a} \|^{2} = \| \mathbf{s}_{i} \|^{2} - 2\mathbf{a}^{T}\mathbf{s}_{i} + \| \mathbf{a} \|^{2}$$

Therefore

$$\mathcal{E}_{\text{translute}} = \sum_{i=1}^{M} \| \mathbf{s}_{i} \|^{2} p_{i} - 2 \sum_{i=1}^{M} \mathbf{a}^{T} \mathbf{s}_{i} p_{i} + \| \mathbf{a} \|^{2} \sum_{i=1}^{M} p_{i}$$

$$= \mathcal{E} - 2 \mathbf{a}^{T} E[\mathbf{s}] + \| \mathbf{a} \|^{2}$$
Where $E[\mathbf{s}] = \sum_{i=1}^{M} \mathbf{s}_{i} p_{i}$

Differentiating the above Equation with respect to the vector \mathbf{a} and then setting the result equal to zero, the minimizing translate is: $\mathbf{a}_{\min} = E[\mathbf{s}]$ and the minimum energy is $\mathscr{E}_{\text{translate,min}} = \mathscr{E} - \parallel \mathbf{a}_{\min} \parallel^2$

Example

Assuming equally likely signals, Find the Average energy of the following signal constellations

For (a)
$$E_a = \frac{1}{4} \left(2 \left(\frac{\alpha^2}{4} \right) + 2 \left(\frac{9\alpha^2}{4} \right) \right)$$
$$= \frac{5}{4} \alpha^2$$

For (b)
$$E_b = \frac{1}{4} \left(\alpha^2 + 4\alpha^2 + 9\alpha^2 \right)$$

$$= \frac{14}{4} \alpha^2$$

43

Pairwise Error Probability

For AWGN channels and equally likely signals, the pairwise error probability of two signals s_i and s_k depends on the Euclidean distance between the two signals:

$$\Pr\left\{s_{i} \to s_{k}\right\} = \frac{1}{2} \operatorname{erfc}\left(\frac{\left\|s_{i} - s_{k}\right\|}{2\sqrt{N_{0}}}\right) = Q\left(\frac{\left\|s_{i} - s_{k}\right\|}{\sqrt{2N_{0}}}\right)$$

Where Q(.) is the Gaussian Q function.

The Q-function in Matlab

```
function out=q(x)
%Q Function (Gaussian Q-function)
% Area under the tail of a Gaussian pdf with
% mean zero and variance 1 from x to inf.
%
% See also: ERF, ERFC, QINV
out=0.5*erfc(x/sqrt(2));
```

45

Pairwise Error Probability: Example FSK

• The signal constellation for binary FSK is:

E is the average signal Energy

The Euclidean distance between the two signals is:

$$d_{12} = ||s_1 - s_2|| = \sqrt{2E}$$

$$\Pr\left\{s_{i} \to s_{j}\right\} = Q\left(\sqrt{\frac{E}{N_{0}}}\right) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E}{2N_{0}}}\right)$$

Pairwise Error Probability: Example Binary PSK

 The signal constellation for binary PSK is:

The Euclidean distance between the two signals is:

$$||s_1 - s_2|| = 2\sqrt{E}$$

 $\Pr\left\{s_{i} \to s_{j}\right\} = Q\left(\sqrt{\frac{2E}{N_{0}}}\right) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E}{N_{0}}}\right)$

E is the average signal Energy

47

Error Probability for Binary FSK and PSK

Decision Regions

• Minimum distance detection rule:

The average symbol energy E_s is defined as:

$$E_{s} = \frac{\sum_{i=1}^{M} \left| S_{i} \right|^{2}}{M}$$

Where *M* is the signal set size.

49

Union Bound

• Assume that the signal set size is M, for equally probable transmission, the probability of error is:

$$P_e \le \sum_{j=2}^{M} \Pr\left\{ E \middle| s_i \right\}$$

• For example, QPSK:

$$P_e \le \Pr\{s_1 \to s_2\} + \Pr\{s_1 \to s_3\} + \Pr\{s_1 \to s_4\}$$

Union Bound: QPSK example

The Euclidean Distances are:

$$d_{12} = d_{14} = 2\left(\sqrt{\frac{E_s}{2}}\right) = \sqrt{2E_s}$$

$$d_{13} = 2\sqrt{E_s}$$

• The symbol error rate for QPSK is:

$$P_{e} \leq 2Q\left(\sqrt{\frac{E_{s}}{N_{o}}}\right) + Q\left(\sqrt{\frac{2E_{s}}{N_{o}}}\right) = erfc\left(\sqrt{\frac{E_{s}}{2N_{o}}}\right) + \frac{1}{2}erfc\left(\sqrt{\frac{E_{s}}{N_{o}}}\right)$$

Tight Union Bound: QPSK example

To get a tighter union bound, reduce overlap between decision regions.

$$d_{12} = d_{14} = 2\left(\sqrt{\frac{E_s}{2}}\right) = \sqrt{2E_s}$$

The symbol error rate for QPSK is:

$$P_e \le \Pr\left\{s_1 \to s_2\right\} + \Pr\left\{s_1 \to s_4\right\}$$

$$P_{e} \le 2Q \left(\sqrt{\frac{E_{s}}{N_{0}}} \right) = erfc \left(\sqrt{\frac{E_{s}}{2N_{0}}} \right)$$

QPSK Symbol error probability and union bound

53

Union Bound: Circularly Symmetric

The probability of symbol error, averaged over all the M symbols, is overbounded as follows:

$$\begin{split} P_e &= \sum_{i=1}^{M} p_i P_e(m_i) \\ &\leq \frac{1}{2} \sum_{i=1}^{M} \sum_{\substack{k=1 \\ k \neq i}}^{M} p_i \operatorname{erfc}\left(\frac{d_{ik}}{2\sqrt{N_0}}\right) \end{split}$$

For circularly symmetric constellations about the origin, such as QSPK

$$P_e \leq \frac{1}{2} \sum_{\substack{k=1 \\ k \neq i}}^{M} \operatorname{erfc} \left(\frac{d_{ik}}{2 \sqrt{N_0}} \right) \text{ for all } i$$

Union Bound: Rectangular Constellations

For rectangular constellations, such as 16QAM, the error rate will be dominated by the minimum distance.

$$d_{\min} = \min_{k \neq i} d_{ik}$$
 for all i and k
Thus $\operatorname{erfc}\left(\frac{d_{ik}}{2\sqrt{N_i}}\right) \leq \operatorname{erfc}\left(\frac{d_{\min}}{2\sqrt{N_i}}\right)$ for all i and k

And the average probability of symbol error will be:

$$P_e \le \frac{(M-1)}{2} \operatorname{erfc} \left(\frac{d_{\min}}{2\sqrt{N_e}} \right)$$

Since erfc is bounded by $\operatorname{erfc}\left(\frac{d_{\min}}{2\sqrt{N_0}}\right) \leq \frac{1}{\sqrt{\pi}} \exp\left(-\frac{d_{\min}^2}{4N_0}\right)$

Then
$$P_e \le \frac{(M-1)}{2\sqrt{\pi}} \exp\left(-\frac{d_{\min}^2}{4N_0}\right)$$

Bit versus symbol error probability

Case 1: Gray Code

In the first case, we assume that it is possible to perform the mapping from binary to M-ary symbols in such a way that the two binary M-tuples corresponding to any pair of adjacent symbols in the M-ary modulation scheme differ in only one bit position.

Moreover, given a symbol error, the most probable number of bit errors is one. subject to the aforementioned mapping constraint. Since there are log₂M bits per

error is related to the bit error rate as follows:

$$P_{a} = P\left(\bigcup_{i=1}^{\log_{2}M} \{i\text{th bit is in error}\}\right)$$

$$\leq \sum_{i=1}^{\log_{2}M} P(i\text{th bit is in error})$$

$$= \log_{2} M \cdot (\text{BER})$$

Bit versus symbol error probability

Case 1: Gray Code

We also note that

$$P_e \ge P(i\text{th bit is in error}) = BER$$

It follows therefore that the bit error rate is bounded as follows:

$$\frac{P_e}{\log_2 M} \leq \text{BER} \leq P_e$$

$$P_a = P\left(\bigcup_{i=1}^{\log_2 M} \{i\text{th bit is in error}\}\right)$$

$$\leq \sum_{i=1}^{\log_2 M} P(i\text{th bit is in error})$$

$$= \log_2 M \cdot (\text{BER})$$

Bit versus symbol error probability

Case 2

Let $M = 2^K$, where K is an integer. We assume that all symbol errors are equally likely and occur with probability

$$\frac{P_e}{M-1} = \frac{P_e}{2^K-1} \qquad \text{where P}_e \text{ is the average probability of symbol error}$$

What is the probability that the ith bit in a symbol is in error?

there are $2^{K\cdot 1}$ cases of symbol error in which this particular | are $2^{K\cdot 1}$ cases in which it is not changed.

Hence, the bit error rate is

$$BER = \left(\frac{2^{K-1}}{2^K - 1}\right) P_{\sigma} = \left(\frac{M/2}{M - 1}\right) P_{\sigma}$$

Note that for large M, the bit error rate approaches the limiting value of $P_{\rm e}/2$

