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Chapter 5 Signal Space Analysis

Dr. Samir Alghadhban

Objective

Geometric representation of signals with finite energy, which
provides a mathematically elegant and highly insightful tool
for the study of data transmission.

Maximum likelihood procedure for the detection of a signal in
AWGN channel.

Derivation of the correlation receiver that is equivalent to the
matched filter receiver discussed in the previous chapter.

Probability of symbol error and the union bound for its
approximate calculation.
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5.1 Introduction

m; 5;(t) x(2) = estimate of  m;

M . . i
essage Transmitter Channel Receiver

source

* A message source emits one symbol every T seconds, with the
symbols belonging to an alphabet of M symbols denoted by m,
m,, ..., my

* A priori probabilities p,, p,, . . ., p,, specify the message source
output probabilities.

* If the M symbols of the alphabet are equally likely, we may express
the probability that symbol m, is emitted by the source as:

P = Plmy)

"'1!' i =1,2
M ori=1,2,...,. M
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5.1 Introduction

; (1) x(2) = estimate of  m;

M " ) i . i

essage Transmitter Channel Receiver
source

* The transmitter takes the message source output m, and codes it into a
distinct signal s(t) suitable for transmission over the channel.

* The signal s,(t) occupies the full duration T allotted to symbol m.

* Most important, s,(t) is a real-valued energy signal (i.e., a signal
with finite energy), as shown by:

T
E=[s®d. i=1, 2, .. M
0

5.1 Introduction

; (1) x(2) = estimate of  m;
M " ) 5i( . i
essage Transmitter Channel Receiver
source

The channel is assumed to have two characteristics:

1. The channelis linear, with a bandwidth that is wide enough to
accommodate the transmission of signal s,(t) with negligible or no
distortion.

2. The channel noise, w(t), is the sample function of a zero-mean white
Gaussian noise process.

We refer to such a channel as an additive white Gaussian noise (AWGN)
channel. Accordingly, we may express the received signal x(t) @s  tansmited  Received

signal signal
si() + (1)

0=t=T

#(t) = sdt) + wit), {i=1,2,...,M )

White Gaussian nofse

w(r)
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5.1 Introduction

m; 5;(t) x(2) = estimate of

Message
source

Transmitter Channel Receiver

The receiver has the task of observing the received signal x(t) for a
duration of T seconds and making a best estimate of the transmitted signal
s,(t) or, equivalently, the symbol m,.

However, owing to the presence of channel noise, this decision-making
process is statistical in nature, with the result that the receiver will make
occasional errors.

The requirement is therefore to design the receiver so as to minimize the
average probability of symbol error, defined as:

M
P, = zpip<m # mi|mi) , where p; is the priori probability
i=1

P(rh # mi|mi) Is the conditional probability,

Detection Errors Example

p(1)

A
P
|
|7
(a)
Signal with noise
. —A,+n>0
7 \ (Detection error)
/
b /
_ »
N A W2 N
N4 A, +n>0
pTn~Y A,+n>0
—A,7 +n <Q (Correct detection) (Corrléct detection)
(Correct detection) (b)
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5.2 Geometric Representation of Signals

The essence of geometric representation of signals is to represent any set of
M energy signals {s,(t)} as linear combinations of N orthonormal basis

functions, where N < M.

That is to say, given a set of real-valued energy signals s,(t), s,(t), ..., Sp(t),

each of duration T seconds, we write

N
3 0=:=
sift) = 3 sydile), {i —51 " T M

~i
Where the coefficients of the expansion are defined by:

T P
SU_=L sO618) dt, {x— ,2,....M

i=1,2,...,N . i,
2a
. . Ve
The real-valued basis function are orthonormalrﬁaﬂﬂj 7 \\
T ‘* i f ) ™ f
1 ;o= —-al a _
[ a0 de = 5, - {1 i ] o
0 0ifi#j ot |
A

(a)

5.2 Geometric Representation of Signals

si(t):

5 0=t=
slt) = S 5,800, { 0=t=T
1 i 2,...

o

.
o (] [T e
—_— 0

-
° f dt i
0

Synthesizer Correlator
o ()

(a) (b)

The set of coefficients may naturally be viewed as an N-dimensional
vector, denoted by s;. The important point to note here is that the
vector s; bears a one-to-one relationship with the transmitted signal

T .
s,,.=L s,(t)e(t) dt, {;;;;,

M
»N
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5.2 Geometric Representation of Signals

Signal Vector: We may state that each signal is completely determined

by the vector of its coefficients

Si

S .
=1 .| i=1,2,..., M

SN,

Signal Space: The N-Dimensional Euclidean space is called the signal space

ol Example (%)
S N=2 ¥
T M=3 "

ol

\

i)

;
[
A

5.2 Geometric Representation of Signals

Length: In an N-dimensional Euclidean space, it
is customary to denote the length (also called
the absolute value or norm) of a signal vector s,
by the symbol ||sl||

Squared-Length: The squared-length of any
signal vector s; is defined to be the inner
product or dot product of s; ,with itself, as

shown by: A
Is % = s,

N
=>sk i=12...,.M
=1

The inner product of the signals s,(t) and s,(t)
over the interval [0, T] is defined as:

.
L s:(t)su(t) dt = sTs,
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5.2 Geometric Representation of Signals

* Squared Euclidean Distance: B
N 3
I8 — Sk ” = Z (5.,' - S,\;]‘
= I‘ 2 S

T

= | (sl = sate’r

* Angle 6, between two signal vectors s; and s, JEE—

0. = S;rS‘ -1 >
OIS T el

* The two vectors s, and s, are orthogonal or
perpendicular to each other if their inner
product s;Ts, is zero, in which case 8, = 90
degrees.

5.2 Geometric Representation of Signals

There is an interesting relationship between the B
energy content of a signal and its representation as :
a vector. . o =
E = E 2 Signal energy is equal to its
=1 . inner product or squared-length ! . ;
a |s’| L | L | ! f
_3 —2 -1 0 1 2 3
Proof: 1
r i Q |
E; = f siit) dt i
¢ b N

m

o L=

T N N
= J [Z s‘,.é,(t)][kE] Smdhm:ldf -

N N T
E, = E > s,,s,,‘fa &y(thdy(t)dt

1

i
~
1

It
-




5.2 Example 1/3

* Find a set of orthonormal basis function for the following

s1(1) s5(1)

0

s3(1)

2

i I — 0 7

—0.5 —05—,
Solution:

(410 @l1)

‘ \ . 0
— ’ | P
-1

Il

54(1)

5.2 Example 2/3
* Find the signal vector of the four signals
s,=(1,-0.5),s,=(-0.5,1),s;=(0,-1),s,=(0.5, 1)
* Represent these signals geometrically in the vector space
\,mﬂ I\_,m|_| 53(0) . (1) 5, | G g S
Aull Il_] ,*H:J e u = l - 05
! \‘KJ'
@0 o1) —(]‘,5 ‘U‘.S |
T_‘ ﬂ (c) -0.5 5
‘ 1 — | 1 2 =
—l s, 16
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5.2 Example 3/3

* Find the energy of signals s,(t) and s,(t)
E, =|fs|[ =1 +(=0.5* =1.25
E,=|ls,|[ =05 +1>=125
* Find the Squared Euclidean Distance between s,(t) and s,(t)
dy; =||51 —s4||2
=(1-05)" +(-0.5-1)’
=025+2.25=25

* Find the angle between s,(t) and s,(t)

STS,
i ]ls:

cosf,, = =0 =6,=9° Thus, s,(t) and s,(t) are orthogonal

Gram-Schmidt Orthogonalization
Procedure

Gram-Schmidt orthogonalization procedure provides a complete

orthonormal set of basis functions.

* Suppose we have a set of M energy signals denoted by s,(t),
Sy(t), . .., Spylt).

* Starting with s,(t) chosen from this set arbitrarily, the first basis
function is defined by:

s(t)

t) = ——
$1(t) VE,

* Where E; is the energy of the signal s,(t). Then, clearly, we have

s:(t) = VE194(t)
= sn1¢.(2)

10/28/13



Gram-Schmidt Orthogonalization
Procedure

Next, using the signal s,(t), we define the coefficient s,, as

~T

531 = Jo sa(t)d4(t)dt | The projection of s,(t) into the basis ®,(t)

We may thus introduce a new intermediate function

g:(t) = s3(t) — s3:9,{(t) | Subtract the contribution of the first basis

from s,(t)

Note that g,(t) is orthogonal to @,(t)
Now, we are ready to define the second basis function as:

&alt) = — fzm _ 51“):_521?;1&
\f_[) gtydt VE; = 53,

Gram-Schmidt Orthogonalization
Procedure

Continuing in this fashion, we may in general define

-1

glt) = si(t) = 2 s;(t)

1

T
Where 5. = L s, = 1201

The basis function are

The dimension N is less than or equal to the number of
given signals, M, depending on whether the signals are
linearly independent or not.

20
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Gram-Schmidt Orthogonalization
Procedure: Example

51() 12()
3
1 1 2 1 1 2
S3(t) - 94(f)
+1 L ]
3 n

21

Example: Step 1

E;= c’IO|S1(f)|2“” =2

—00

_s1() _s(1)

° fl(r)
S0

22
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Example: Step 2

o= [ filt)sa(r)dr=0

£ (1) =s2(t) = e12fa(t) = 52(r)

oo t
Ey= [lp()di=2 12 720
fz(t)=%=sfg) —yvz § 12l

23

Example: Step 3

as= ofofl(t)~v3(t)dr= 0

3= sz (t)s3(t)dt =2

£3 ()= s3(0)— a3 /u(0) -e2352(0)
=53() +~2/2(£) =0

e No new basis function

24
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Example: Step 4

ca= | A(t)sa(t)dr =7

—00

€4 = sz(f)m(f)df =0

4 () =s4(0) — i fy(1) — 24 £(2)
=s4(1) +~2£1()=0

e No new basis function. Procedure Complete

25

Signal Constellation Diagram

s () ] 2(D

s4(1) s1(7)
== 5 H ()

s3(7)

26
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5.3 Conversion of the Continuous AWGN
Channel into a Vector Channel

Suppose that the input to the bank of N product
integrators or correlators is the received signal

—>VX
x(t) defined as: i
0=t=T 10
x(t) = Si(f) + wit), i=1,2,..., M N f’ -
where w(t) is a sample function of a white ._,T;,.
Gaussian noise process W(t) of zero mean and : :
power spectral density No/2. L x -
the output of correlator j is the sample value of f '
a random variable X; e

-
x; = L x(t)pit)de
i=1,2,...,N

. .
where s, = L stietide  and w; = L wit)d,{t)dt

=Sy T Wy

Random Variable
7

2 | Ovservation

vector
x

5.3 Conversion of the Continuous AWGN
Channel into a Vector Channel

Each correlator output X; is a Gaussian random

variable with mean s; and variance N./2. (see the — (s
proof in section 5.3 in textbook) T
Ln
1 R U i=1,2...,N
fx';(xllm"‘ . VN, exp[ N, ;= sy ]’ i=1,2,..., M ,_‘>—> x 'I:\’ L %2 | Ovservation
Also the correlator output X; are mutually ._,T;,.
uncorrelated and therefore they are statistically : :
independent. L x -
Thus, the joint conditional pdf of the
observation vector X of length N is: e
1 N
Fxdx|m) = (mNg) N2 cxp[—ﬁ > x - 5,,)2j|, i=1,2,...,M
0 =1

10/28/13
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5.4 Likelihood Functions

* At the receiver, we are given the observation vector x and
the requirement is to estimate the message symbol m; that is
responsible for generating x.

* We introduce the likelihood function, denoted by L(m,)

Lim) = fxix|m), i=12,...,M

* In practice, we find it more convenient to work with the log-

likelihood function, denoted by /(m,)

I(m;) = log Lim,), i=1,2...,.M
* For the observation vector x over AWGN channels, the log-
likelihood functions are:

1| .
Um) =~ 2 (x5 — s | i=1,2..., M
Ny /=

v
‘ Squared Euclidean Distance

29

5.5 Coherent Detection of Signals in Noise

Signal Detection Problem:

Given the observation vector x, perform a mapping from x to an
estimate m of the transmitted symbol, m;, in a way that would
minimize the probability of error in the decision-making process.

f2 f2
Noise cloud

Noise
Received  vector
w

signal point
Observation
vector Message
X point

Signal vector
Si

(a) (b)

30
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5.5 Maximum a posteriori probability rule

Probability of error
* Suppose that, given the observation vector x, we make the
decision m = m, . The probability of error in this decision, which we
denote by P (m;|x), is simply
P.(m;|x) = P(m; not sent |x)
=1 — P(m; sent |x)
Optimum decision rule
The maximum a posteriori probability (MAP) rule is:

Set it = m, if
P(m, sent| x) = P{my; sent|x) forallk # 1

Using Bayes'’ rule, the MAP rule becomes:
Set it = my; if
Pafxix|mi)

is maximum for k& = § 31
Fxix}

5.5 MAP rule

* The MAP rule is:
Set it = m; if

Pefxix|rme)
Fxlx}

is maximum for k& = §
* Where
— whete p, is the a priori probability of transmitting symbol m,

— f(x1'm,)is the conditional probability density function of the random
observation vectot X given the transmission of symbol m,

— and f,(x) is the unconditional probability density function of X.
* Note that
— The denominator term f,(x) is independent of the transmitted symbol.
— The a priori probability p, = p; when all the source symbols are
transmitted with equal probability.
— The conditional probability density function f,(x| m,) bears a one-to-
one relationship to the log-likelihood function /(m,). 32

10/28/13
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5.5 Maximum likelihood (ML) rule

* Thus, for equally probable symbols, the MAP rule becomes
equivalent to the Maximum likelihood (ML) rule such as:

Set it = m; if Where /(m,) is the log-likelihood function
I(m,;) is maximum for k = ¢
f2
Region
Decision
f, f, <
Noise cloud Feceived Noise \\\ VE '\;:Igif‘fazge s 7 boundeny
signal point /"W N /,’
Objeeé\‘/grnon /Message FEgEm \\\ ,’ Region
point . 4 Z
Signal vector Message b o Message
s . point 3 \\ 4 point 1 ‘
‘ 5 AN E ‘
// \\\
/// \\
@ ®) y \\
s M
,// -VE P;f\fige \\\ Decision
Region boundary
Z4
f2
* Let Z denote the N-dimensional space of all i
. . Decision
possible obsetvation vectors x. N Message 7 boundary
\\ VE point 2 //
* We refer to this space as the observation .. N 4
ogion 9 ,/ Region
space. % N A 7
Message A v Message
* Because we have assumed that the decision il A Pt 1
A . -+E il Y E
rule must say m =m; wherei=1,2,...,, M, the = y | . vE
. . . // \\
total observation space Z is correspondingly y .
7
partitioned into M-decision regions, denoted y JF | essage N
V = point 4 N Decision
by Zl’ ZZ"' .y ZM . Rl boundary
. . . ZA
* Accordingly, we may restate the ML decision

rule of as follows:
Observation vector x lies in region Z, if
I(m,) is maximum for k =i

10/28/13
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5.5 MLD rule for AWGN channels

Recall that for AWGN channels,
1 N
lmy) = '-ﬁog‘(x,—s,-,-)’. i=1,2...,M

Note that /(m,) attains its maximum value when the summation term is
minimized.

Therefore, the MLD rule for AWGN channels is to minimize the squared-
Euclidian distance

Observation vector x lies in region Z, if
N

S ix; = sz)? is minimum for k = i

N
Where D= s = |x—s)?
=1
-1

Observation vector x lics in region Z, if
the Euclidean distance || x ~ s | is minimum for & = §

For equally likely signals, the maximum likelihood decision rule is simply to choose the
message point closest to the received signal point 35

5.5 MLD rule for AWGN channels

The squared Euclidean distance could be expanded as:

N N N N

D (x— syl =2 xF =2 sy + Y sk

=1 =1 i=1 =1

— The first summation term of this expansion is independent of the index k and
may therefore be ignored.

— The second summation term is the inner product of the observation vector x
and signal vector s,.

— The third summation term is the energy of the transmitted signal s(t)
Therefore, the MLD rule becomes
Observation vector x lies in region Z, if

o~ 1
Est,-—~E,,ismaximumfork=i
P A )

!

36

10/28/13
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5.6 Correlation Receiver

Demodulator

Inner-product cakculator

| . ‘I 7 N
o e
| '___f_ __________ 1 1‘
1,00 5 36,
— x's,
) =l x j:)r dr o:«:«;?;g:mn ;> > Z > if;ii'[ " Esuzava
f : f |
1,00 Sz 2k
. e
L% jr_.,-‘. —— x: 3 =
o -
f |
fytn Sm 2Em
(&)
37
* Suppose also that symbol m; is transmitted, .
an error occurs whenever the received —
signal point does not fall inside region Z; £ R M:sage ) Dection
. . . N\, int 2
* Averaging over all possible transmitted N - ///
symbols, we readily see that the average e N S Region
. . A y !
probability of symbol error, P, is = W Ve '
M -VE ,/ b VE ‘
P, = ’_21 p; P(x does not lie in Z;|m; sent) // \\\
M /// \\\
= — > P(x does not lie in Z,|m; sent) y o \
M "2‘ e ' ,// -VE Poeizfige \\\ Decision
i boundary
=1- 1 z Pix lies in Z;| m; sent) Rezg:on
M5
1 M
P.=1- M 2‘ . Fxix|m) dx
38

10/28/13
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5.7 Invariance of the Probability of Error to
Rotation and Translation

Changes in the orientation of the signal constellation with respect to
both the coordinate axes and origin of the signal space do not affect the
probability of symbol error P,

This result is a consequence of two facts
— In maximum likelihood detection, the probability of symbol error P, depends solely
on the relative Euclidean distances between the message points in the
constellation.
— The additive white Gaussian noise is spherically symmetric in all directions in the

signal space. f
f, 2
Vza
a 7N
| S R N
I : e N
| N
| E— : e
—a} 0 8 -V2a 0 /V2a
| | N a
ot \ il
“a |
-V2a

5.7 Invariance of the Probability of Error to
Rotation and Translation

* Suppose all the message points in a signal constellation are translated by a
constant vector amount a
Sitranslate — S T @ i=1, 2, “eey M
* The observation vector is correspondingly translated by the same vector
amount

Xoamlare = X = @
* Then, | Xuwwnaue = Sicnaaee | = | %X = 8] for all ¢
If a signal constellation is 1
2
translated by a constant vector b e
amount, then the probability of 2 ——-e S RN
s \
symbol error P, incurred in ! | . /7 Ny,
N o . . = T 1 4
maximum likelihood signal N ® BN e e
e
detection over an AWGN channel Ty B A e
is completely unchanged. vz

10/28/13
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5.7 Minimum Energy Signals

Given a signal constellation {si}:‘i1 , the corresponding signal
constellation with minimum average energy is obtained by
subtracting from each signal vector s; in the given constellation
an amount equal to the constant vector E[s],

Wher S
ere E[s]=Ys.p,
i=1
= E[s]
and the minimum energy of the translated signal constellation is

Thus the minimum translate vector is a

min

2

=€~ | amml|”

‘é:nml.!tc.min

-3a/2 a2 0 a2 3a/2 0

5.7 Minimum Energy Signals

Proof:
The average energy of this signal constellation translated by vector amount a
is:

M
Eeranslare = 24 " s — a " 7pv
i1

The squared Euclidean distance between s; and a is expanded as:

Isi—al?=|s]*—2a"s; + [|af?
Therefore

M M M
<€:um e = S; 2 ;=2 3 ars, ,+ la 2 ; M
: ,-21 il ,-21 P I Z, P Where Efs) = 3 sp
=% —2a"F[s) + |a]? =

Differentiating the above Equation with respect to the vector a and then
setting the result equal to zero, the minimizing translate is: a,,, = E[s]

2

and the minimum energy is € ._.uiscomin = & = | Qe || * 2

10/28/13
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Example

Assuming equally likely signals, Find the Average energy of the
following signal constellations

—3a/2 —a2 0 a2 3a/2 0 a 2a 3a
(a) ®)
For (a) 2 2
L[ e, 2
4 4 4
=§a2
4
For (b) 1
Ebz—(a2+4(x2+9o¢2)
4
_14
4 4

Pairwise Error Probability

For AWGN channels and equally likely signals, the pairwise error
probability of two signals s;and s, depends on the Euclidean
distance between the two signals:

Pr{s, - sk} = lerfc[Hs';s’f] _ Q[Hsi _SkH]
; 277 2w, V2N, S S0
Where Q(.) is the Gaussian Q function. ;
.
__ LT yz Sz S;
()=~ j exp[ —ﬂdy

44
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The Q-function in Matlab

function out=g(x)

%Q Function (Gaussian Q-function)
Zrea under the tail of a Gaussian pdf with
mean zero and variance 1 from x to inf.

of 0P oo

See also: ERF, ERFC, QINV

o0

45

Pairwise Error Probability: Example FSK

* The signal constellation for
binary FSK is:
[

VE 8%,
N V2E d12 =||S1 —S2H= N2E

The Euclidean distance between
the two signals is:

E is the average signal Energy

46

10/28/13
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Pairwise Error Probability: Example Binary PSK

* The signal constellation for
binary PSK is:

The Euclidean distance between
the two signals is:

||S1 —S2|| =2VE
L 3
\/rE 0 \fE

P
- *—

E is the average signal Energy

Pr{si %sj}:Q[ ?v—E]:%erfc[\/NEJ

47
Error Probability for Binary FSK and PSK
10°
107! :1‘ '1::: S — Q}:tho gonal Signaling
§ 1072+
_—; 107}
2 1074
107
107 . .
-5 0 5 10
E/N, in dB
Signal to noise ration (SNR)
48
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Decision Regions

*  Minimum distance detection rule:

) &,
S
£ [£|® [ ]
B 7\/; >
A, A,
t AAAAAAA }
\/E E| A, A,
REan e
[ J ®
Sy

s,
é

£

S

The average symbol energy E,
is defined as:

M
> s
E — &=

3 M

Where M is the signal set size.

49

Union Bound

* Assume that the signal set size is M, for equally
probable transmission, the probability of error is:

M
<
Pe _;Pr{E’Si}

e For example, QPSK:

Ap

Sz

———

Ay ¥

P < Pr{s1 —>SZ}+P1r{S1 %s3}+P1r{sl —)S4}

50

10/28/13
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Union Bound: QPSK example

* The Euclidean Distances are:

E
d,=d, :2[ ZS J:\/E
d13 :2\/Fs

g 4, .
5 J;- 2 . ‘JEJE
—[ == N )\
2 2 A: 1
f 3 cl14

}/ oy

3 A4

J. d,. sl .@,7 E?
S-J

e The symbol error rate for QPSK is:

o B )

51

Tight Union Bound: QPSK example

* To get a tighter union bound, reduce overlap betwee

decision regions. s q " s
o 12,0
E >
d12=d14=2 —= =,/2ES A: Al
2 ‘ X dy,
A , )
A A,
. e
e The symbol error rate for QPSK is: S ® .

P < Pr{sl —>s2}+Pr{s1 —>s4}

ol oA

52
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QPSK Symbol error probability and union bound

Probability of Error

10°

107!

union bound

/‘ h \1\“-{\
/
symbol error
probability
2 4 6 8 10

E/N, indB

53

Union Bound: Circularly Symmetric

The probability of symbol error, averaged over all the M symbols, is overbounded
as follows:

p=1 2' crfc( A )foralli
‘T2E 2V'N,
ks

s N
\,
\
©
3 [ 3 .
7
N, s s s -
\ /
/ N
N o
AN SN,
S s
N 5 f v —
4 N , 3
o N g}
E N X
\, /
. - /
\

27



Union Bound: Rectangular Constellations

For rectangular constellations, such as 16QAM, the error rate will be dominated
by the minimum distance.

d, ;. = min dy for all i and & =
kwt . ®3d/2 ) .
\ 1011 1001 1110 1111
Thus erfc( d:h_.) = erfc( i ) for all i and &
2V Ny Z\J/fT(, o o a2l o .
1010 1000 1100 1101
! ! ! ! 1,
And the average probability of symbol error will be: _3.‘//2 _(//2. a2 d:z "
0001 0006 0100 0110
P = M 1) erfc dm.ii.. B 3| .
e 2 2\/?\&) 0011 0010 0101 o111
Since erfc is bounded by crfC( dain ) = exp(—ﬁ) !
2VN,) ~ Vr 4N,

M-1) di
Then = —-(J — xpl — 2
F. 2V P 4N,

55

Bit versus symbol error probability

Case 1: Gray Code

In the first case, we assume that it is possible to perform the mapping from binary to
M-ary symbols in such a way that the two binary M-tuples corresponding to any pair
of adjacent symbols in the M-ary modulation scheme differ in only one bit position.

Moreover, given a symbol error, the most probable number of bit errors is one.
subject to the aforementioned mapping constraint. Since there are log,M bits per

symbol it follows that the average probability of symbol b2
. . Decision
error is related to the bit error rate as follows: boundary
Region Region
ZZ Zl
logz M v "
e e essage e
P, = P( lJ (ith bit is in error}) T VB2
=1 (00) (10
\ Decision
log, A boundary
= N Plith bitic i BN N
= it is in error
% Plith bit ) .
= log; M- (BER) v
on
Region Region
Z a

1
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Bit versus symbol error probability

Case 1: Gray Code

We also note that

-1

P, = P(sth bit is in error) = BER

It follows therefore that the bit error rate is

bounded as follows: = log; M- (BER)

%2

TogzM
P, = P( lJ (ith bit is in error])

oy M
= > Piith bit is in error)
=

P. - — Decision
oI SBERSP,
Og2 Region Region
Z, zZ;
Message Message
point m, VEZ o point m,
(00) (10)
Decision
boundary
~~[E2 0 ER2
~+E2
Message Message
point ms point m,
(01) R
Region egion
z, 4

1

Bit versus symbol error probability

Case 2

Let M = 2%, where K is an integer. We assume that all symbol errors are equally likely

and occur with probability

. _ P
M-1 28-1

What is the probability that the ith bit in a symbol is in error?

where P, is the average probability of symbol error

’2
there are 2¢! cases of symbol error in which this particular |
are 2K cases in which it is not changed. et e
Hence, the bit error rate is
|0.10 10.00 2 11‘00 11‘01
x-1 [ M2
BER = %— P, = - P, 7311/2 7//2‘ //‘2 3‘//2
2K -1 WM -1 . d z
. ®—d2— . .
0001 0000 0100 0110
Note that for large M, the bit error rate approaches . Y .
. 0011 0010 0101 o111
the limiting value of P/2
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