Chapter 4
Baseband Pulse Transmission

EE417
Dr. Samir Alghadhban
KFUPM

Content

4.1 Introduction

4.2 Matched Filter

4.3 Error Rate Due to Noise
4.4 Intersymbol Interference

4.5 Nyquist Criterion for Distortionless Baseband
Transmission.

4.7 Baseband M-ary PAM Transmission
4.11 Eye Patterns

10/11/13



4.1 Introduction

* In this chapter we study the transmission of digital data
(of whatever origin) over a baseband channel.

* Data transmission over a band-pass channel using modulation
is covered in Chapter 6.

* Baseband transmission of digital data requires the use of a
low-pass channel with a bandwidth large enough to
accommodate the essential frequency content of the data
stream.

* Typically, however, the channel is dispersive in that its

frequency response deviates from that of an ideal low-pass
filter.

4.1 Error Sources in Baseband
Transmission

Intersymbol Interference (1Sl)

* The result of data transmission over a dispersive channel is
that each received pulse is affected somewhat by adjacent
pulses, thereby giving rise to a common form of interference
called intersymbol interference (1Sl).

* Intersymbol interference is a major source of bit errors in the
reconstructed data stream at the receiver output.

* To correct for it, control has to be exercised over the pulse
shape in the overall system.

* Thus much of the material covered in this chapter is devoted
to pulse shaping in one form or another.
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4.1 Error Sources in Baseband
Transmission

Another source of bit errors in a baseband data transmission
system is the channel noise.

Naturally, noise and ISl arise in the system simultaneously.
However, to understand how they affect the performance of
the system, we first consider them separately; later on in the
chapter, we study their combined effects.

4.2 Matched Filter

A fundamental result in communication theory deals with the
detection of a pulse signal of known waveform that is
immersed in additive white noise.

The device for the optimum detection of such a pulse involves
the use of a linear-time-invariant filter known as a matched
filter.

It it called a matched filter because its impulse response is
matched to the pulse signal.

) _ Linear time- A )
Signal X0 | invariant filter of | Y@ 3\: (1)
g impulse response
Sample at
h(t) )
timetr =T

White noise
w(r)

10/11/13



4.2 Matched Filter

The filter input x(t) consists of a pulse signal g(t) corrupted by additive
channel noise w(t), as shown by

x(t) =g(t) + w(t), O0<t<T,whereTisan arbitrary observation interval
The pulse signal g(t) may represent a binary symbol 1 or 0 in a digital
communication system.
The w(t) is the sample function of a white noise process of zero mean and
power spectral density No/2.
It is assumed that the receiver has knowledge of the waveform of the
pulse signal g(t). The source of uncertainty lies in the noise w(t).

) _ Linear time- A )
Signal x() invariant filter of | ¥® 3\: 7
g impulse response
Sample at
h(t) )
timetr =T

White noise
w(t)

4.2 Matched Filter

The function of the receiver is to detect the pulse signal g(t) in an
optimum manner, given the received signal x(t).

To satisfy this requirement, we have to optimize the design of the filter so
as to minimize the effects of noise at the filter output in some statistical
sense, and thereby enhance the detection of the pulse signal g(t).

Since the filter is linear, the resulting output y(t) may be expressed as:
y(t) = go(t) +n(t)

where g,(t) and n(t) are produced by the signal and noise components of
the input x(t), respectively.

) _ Linear time- A )
Signal X0 | invariant filter of | ¥® 3\: ¥
g impulse response
Sample at
h(t) )
timer =T

White noise
w(t)
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Linear time-

i (0 i /(1) (T)
4{?—) R
M ) Sample at
4.2 Matched Filter

White noise
w(r)

* Asimple way of describing the requirement that the output signal
component g,(t) be considerably greater than the output noise
component n(t) is to have the filter make the instantaneous power in the
output signal g,(t), measured at time t =T, as large as possible compared
with the average power of the output noise n(t).

* This is equivalent to maximizing the peak pulse signal-to-noise ratio,

defined as 2.(T)|*

E[r*(2)]

* where |g,(T) |2 is the instantaneous power in the output signal, E is the
statistical expectation operator, and E[n?(t)] is a measure of the average
output noise power.

* The requirement is to specify the impulse response h(t) of the filter such
that the output signal-to-noise ratio is maximized.

Linear time-

i (0 i /(1) /(T)
4{?—) R
M ) Sample at
4.2 Matched Filter

White noise
w(r)

Let G(f) denote the Fourier transform of the known signal g(t),
and H(f) denote the frequency response of the filter. Then the
Fourier transform of the output signal g,(t) is equal to H(f)G(f),
and g,(t) is itself given by the inverse Fourier transform:

3

gdt) = | HUNGU) explizmfs) df

Hence, when the filter output is sampled at time t = T, the signal
power will be:

2

lgAT)|? = f H(f)G(f) exp(j2afT) df
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Linear time-

i (0 i /(1) (T)
4{?—) R
M ) Sample at
4.2 Matched Filter

White noise
w(r)

* Consider next the effect on the filter output due to the noise
w(t) acting alone.
* The power spectral density S,(f) of the output noise n(t) is

equal to the power spectral density of the input noise w(t)
times the squared magnitude response |H(f) |2

* Since w(t) is white with constant power spectral density N,/2,
it follows that:

M

Sulf) = %i |H(f) 12
* The average power of the output noise n(t) is therefore
E[n*(f)] = f : Sxif) df

-

N,
=—2-"_[’1H(fl|’df

Linear time-

i (0 i /(1) /(T)
4{?—) R
M ) Sample at
4.2 Matched Filter

White noise
w(r)

* Thus, the peak pulse signal-to-noise ratio is:

2

I <
f H(f)GIf) exp(j2mfT) df

n= .
N
T“f_n | Hif)|* df

* For a given G(f), what is the frequency response H(f) of the
filter that maximizes n ?

* To find the solution to this optimization problem, we apply a
mathematical result known as Schwarz's inequality to the
numerator of the above Equation.
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Schwarz's inequality

If we have two complex functions @,(x) and @,(x) in the real
variable x, satisfying the conditions:

f_p]d’x(.\'lzdxcm AND ‘(N¢z(x)|zdx<°°

Then
2 row

“— b (x)d(x) dx S—J ) [a(x) ldIJ_“ dafx)|* dx

The equality in (4.9) holds if, and only if, we have

b y(x) = ke 3ix)

Linear time-

i (0 i /(1) /(T)
A’@P_) R
M ) Sample at
4.2 Matched Filter

White noise
w(r)

* Therefore, applying Schwarz's inequality for é,(x) = H(f) and d.(x) = G(f) exp{i=fT),

2

[ oot estpem af| = [ impear [ 1eg o

* Thus, the peak pulse signal-to-noise ratio is:

2 (7 2
=N .[_, G(f)|* df

* The right-hand side of this relation does not depend on the frequency
response H(f) of the filter but only on the signal energy and the noise
power spectral density.

* Consequently, the peak pulse signal-to-noise ratio n will be a maximum
when H(f) is chosen so that the equality holds; that is,

Hol f) = kG*(f) expl=j2mfT)
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Linear time-

i (0 i /(1) (T)
4{?—) R
M ) Sample at
4.2 Matched Filter

White noise
w(r)

In the time domain, the impulse response of the optimum filter is:

bogelt) = k J__ G*(f) exp[~j2mf(T — t)] df

Recall that for real signals g(t), the real part of the spectrum is even and the
imaginary part is odd. Thus G*(f)=G(-f) .

=

hogelt) = k | _ G(—f) expl=2f(T — )] df
= &[Gl exp l2mf(T - 0 df
= kg(T — 1)
The impulse response of the optimum filter, except for the scaling factor k, is

a time-reversed and delayed version of the input signal g(t). So, it is matched
to the input signal.

Linear time-

i (0 i /(1) /(T)
4{?—) R
M ) Sample at
4.2 Matched Filter

White noise
w(r)

* Thus, the peak pulse signal-to-noise ratio will be:
2 (" a2
o = o | |G df

* According to Rayleigh's energy theorem, the integral of the squared
magnitude spectrum of a pulse signal with respect to frequency is equal to
the signal energy E e -

E=| gwa=[ |Gl

2E

* Theref ax = ——
erefore 7 N

o

* Thus, the peak pulse signal-to-noise ratio of a matched filter depends only
on the ratio of the signal energy to the power spectral density of the white

noise at the filter input
16
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Signal
g

4.2 Matched Filter

% x(1)

Linear time-
invariant filter of
impulse response

h()

y(n)

White noise
w(r)

Example: Find the matched filter output g (t)

for the following signal:

Bopelt) = kg(T — )

~. D

Sample at
timer=T

Honlf) = kG*(f) exp{~j2afT)

g (1)
A
Energy = A2T
0 T !
Matched filter
output g,(1)
kAT |- — ———— — — —
|
|
I 13
0 T
17
. Linear time-
Signal invariant filter of | ¥

g

4.2 Matched Filter

x(1)
> (% ) > impulse response

h(r)

White noise
w(r)

Bopelt) = kg(T — )

~. D

Sample at
timer=T

For the special case of a rectangular pulse, the matched filter may be
implemented using a circuit known as the integrate-and-dump circuit

80

A

Energy = A2T

Matched filter
output g,(r)

Rectangular
pulse

kAZT 7\
Output of

integrate-and-dump

circuit
AT [

—_—

Integrator

o

time r =

Sample at

T
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Signal (1) Linear time- ) o7
i invariant filter of | - -
g impulse response éo\oé
. ) Sample at
4.2 Matched Filter

White noise -
wn hoplt) = kg(T — 1)
Hunlf) = kG*(f) exp{~j27fT)

Example2: Consider the signal s(t)

s(1) a) Determine the impulse response of a filter matched
to this signal and sketch it as a function of time.
A
2 b) Plot the matched filter output as a function of time.
T c¢) What is the peak value of the output?
ol r '
2
AL
2

Signal ) Linear time- ) o7
i invariant filter of | - N
g impulse response >
. " Sample at
4.2 Matched Filter

White noise -
wn boplt) = kg(T —t)
Hunlf) = kG*(f) exp{~j27fT)

Example2: Consider the signal s(t)

0 a) Determine the impulse response of a filter matched

A to this signal and sketch it as a function of time.

2

ht)
a/2 fr====- ——I
r t
0 T t
2 ) T T

_AL -A/2 2

2

b) Plot the matched filter output as a function of time.

s_(t)
°© 2
a21/q_

c) What is the peak value of the output?

Peak value = AZT/4

f
1
1
1
1
1
v

T

3T/4 2T

2
¢ t
0 \ 1
i 1
2 [ | 20
AT/81— — = =
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4.3 Error Rate Due to Noise

Consider a binary PCM system based on polar non-return-to-zero
(NRZ) signaling.

In this form of signaling, symbols 1 and 0 are represented by
positive and negative rectangular pulses of equal amplitude and
equal duration.

The channel noise is modeled as additive white Gaussian noise w(t)
of zero mean and power spectral density N,/2.

In the signaling interval 0 <t < T, , the received signal is thus written

as follows:
+A + w(t), symbol 1 was sent
x(t) =

—-A + wlt), symbol 0 was sent

where T, is the bit duration, and A is the transmitted pulse
amplitude.

21

4.3 Error Rate Due to Noise

The structure of the receiver used to perform this decision-making process is:

—>> Say lify >4

PCM wave N Matched \c M Decision
) 0 ;
s(1) filter device Sav 0 if v
¥ Sample at > SayOify<i
timer =T, T
White Gaussian Threshold
noise w(t) A

There are two possible kinds of error to be considered:

— Symbol 1 is chosen when a 0 was actually transmitted; we refer to this
error as an error of the first kind.

— Symbol 0 is chosen when a 1 was actually transmitted; we refer to this
error as an error of the second kind.

22
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4.3 Error Rate Due to Noise

* To determine the average probability of error, we consider
these two situations separately.

* Suppose that symbol 0 was sent. Then
x(t) =-A+ w(t), 0<t<T,
¢ The matched filter output, sampled at time t =T, is:

y= J::" x(t) dt

ATy

1 3
-A 4+ A J‘a w(t) dt

* which represents the sample value of a random variable Y

23

4.3 Error Rate Due to Noise

* Since the noise w(t) is white and Gaussian, we may characterize the
random variable Y as follows:

— The random variable Y is Gaussian distributed with a mean of —A.

— The variance of the random variable Y is
oy = E[{Y + A)|
] e i
= T J“ JU withwlu) dt du-‘
(Te e
= il—":’ Ju Jn Elw(thwiu)] dt du
o Ta rTa

1 \
= Ti Jo J” Rydt, u) dt du

E

* where R, (t, u) is the autocorrelation function of the white noise w(t).

* Since w(t) is white with a power spectral density N,/2, we have
Rylt, 1) = 1'% 8(t — 1) Where §(t-p) is a time-shifted delta function

-

24
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4.3 Error Rate Due to Noise

* Therefore, the variance of Y is:

A f’ N
oy = 2 b 2 8(t — u) dt du

2T,

* The conditional probability density function of the random variable
Y, given that symbol 0 was sent, is:

. 1 ( b+ A)l)
Ly |0) = exp| ==
f (¥ Y VNI T P\ Nnrrb /

25
(a) (b)

4.3 Error Rate Due to Noise

* Let p,,denote the conditional probability of error,
given that symbol 0 was sent.

110 = Py = A|symbol 0 was sent)

[ ety lor dy
A

- [ AR
VaNGIT, '» . No/Ty |

26
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Complementary Error Function

* complementary error function is defined as:

erfcly) = % '[‘ exp(—z%) dz

* which is closely related to the Gaussian distribution.

* For large positive values of u, we have the following upper bound
on the complementary error function:

erfe(u) < M
Vo

* Relation to Q-Function: 1 (_L)
Ofy = 2 erifc V‘E

erfclu) = ZQ(\:"'ZN)

Foo

) = —
Q“’) \'IZ—‘I’T

v

exp(— %2) dx

27

§ TABLE A6.6 The error function

Error Function

u © o erffu) u erftu)

0.00 0.00000 1.10 0.88021

0.05 0.05637 115 0.89612

0.10 0.11246 1.20 0.91031

0.15 0.16800 1.25 0.92290

0.20 0.22270 1.30 0.93401

02§ 027633 1.35 0.94376

2 " 0.30 0.32863 1.40 0.95229
erfe(n) = — ( exp(—2’} dz 0.35 0.37938 1.45 0.95970
Vi o 0.40 0.42839 1.50 0.96611
0.45 0.47548 1.55 0.97162

0.50 0.52050 1.60 0.97635

0.55 0.56332 1.65 0.98038

0.60 0.60386 1.70 0.98379

0.65 0.64203 1.75 0.98667

0.70 0.67780 1.80 0.98909

0.75 0.71116 1.85 0.99111

0.80 0.74210 1.90 0.99279

0.85 0.77067 1.95 0.99418

0.90 0.79691 2.00 0.99532

0.95 0.82089 2.50 0.99959

1.00 0.84270 3.00 0.99998

1.05 0.86244 330 0.999998

“The error function is tabulated extensively in several
references; see for example, Abramowitz and Stegun
{1965, pp. 297-316).
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4.3 Error Rate Due to Noise

T
1
1
1
I
1
A

(@ o)
: : t10 = P{y = A|symbol 0 was sent)
¢ Define a new variable z as:

= { fyly|0) dy
y+ A " [ [y + AP
T=E T e ———— - d
VN/T, V' aNy/T, ' ¢ (\ No/T, ) 4

xp{—27) dz

« Similarly, conditional probability of error, given that symbol 1

was sent is. e

Por \!‘?r (A=ANNRGTT,

1 H[_( A— A )
= = erfc| ==
2 VNG/T,

exp({—2*) dz

29

4.3 Error Rate Due to Noise

* Letp,and p, denote the a priori probabilities of transmitting
symbols 0 and 1, respectively.

* Hence, the average probability of symbol error P, in the receiver is

given by:
Pe = pobro + Pibos

Po A+ ) P ( A-A
=P AXAN P (AZA
2 L(\f‘N.,/T,, 2 T\VNIT,

* What is the optimal value of the threshold A that minimizes the
error probability P, ?

* We need to derive P, and equate it to zero.

* For this optimization we use Leibniz's rule

30
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o,
Leibniz’s Rule aw:%( .

* Consider the integral o
» flz, u) dz

* Leibniz's rule states that the derivative of this integral with respect to u is

d bin} dblu) w .
i o 150 b= 16,0 22~ e, 20 [ 300

* For the problem at hand, we note from the definition of the

complementary error function that: fi; 4 = 2 exp(~z3)
o Vi
alu) = u
biu) = w
* The application of Leibniz's rule to the complementary error function thus

yields

1
Z erfe(u) = —\7 exp(—1’)
/a

31

4.3 Error Rate Due to Noise

A A

(a) b)

* Hence, differentiating P, with respect to A by making use of the
Leibniz’s rule, then setting the result equal to zero and simplifying
terms, we obtain the optimum threshold as:

Ny o
Ay = ——— £9
T 4AT, log(p,)
* For the special case when symbols 1 and O are equiprobable, we have

Pr=po=
* Andthatleadsto A,,=0

32

10/11/13

16



4.3 Error Rate Due to Noise

This result is intuitively satisfying as it states that, for the
transmission of equiprobable binary symbols, we should
choose the threshold at the midpoint between the pulse
heights —A and +A representing the two symbols 0 and 1.

Note that for this special case we also have py; = py,

A channel for which the conditional probabilities of error p,,
and p,, are equal is said to be binary symmetric.

4.3 Error Rate Due to Noise

Correspondingly, for equiprobable binary polar NRZ PCM, the
average probability of symbol error

P, = L erf (—_A )
.= — erfc
« T2 VN,

Since transmitted signal energy per bit is defined as E, =AT,

Accordingly, we may finally formulate the average probability of
symbol error to be:

P, - 3 erfc(\l, No)

which shows that the average probability of symbol error in a
binary symmetric channel depends solely on E, / N,, the ratio of the
transmitted signal energy per bit to the noise spectral density.

10/11/13
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4.3 Error Rate Due to Noise

! l—> say 1ify
PCM wave : Matched N o—_ Decision Wity =4
s(1) 4 filter sample at device Say0ify <i
timer =T, T
1 " {E,
White Gaussian Threshold P, = = erfc J—
noise w(r) A 2 YNy
. 1072
* Using the upper bound on the complementary '
error function, we may correspondingly bound
the average probability of symbol error for the 1074~
PCM receiver -
L < expl_E,/No) 5 10
2V7EL Ny i
z
¢ The PCM receiver therefore exhibits an 3 1078
exponential improvement in the average :Lé
probability of symbol error with increase in 10-101
Ey/No
10—12 1
5 10 2
E,IN, dB

15

4.3 Error Rate: Example

Q) A binary PCM system using polar NRZ signaling operates just above the
error threshold with an average probability of error equal to 10-°. Suppose
that the signaling rate is doubled. Find the new value of the average
probability of error. You may use Table A6.6 to evaluate the complementary
error function.

A) For a binary PCM system, with NRZ signaling, the average probability of

error is
1 E
P =—erfc| |-
e (2]

o

The signal energy per bit is E,=A?T, , where A is the pulse amplitude and T, is
the bit duration.

If the signaling rate is doubled, the bit duration T is reduced by half.
=> E, is reduced by half

36
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4.3 Error Rate: Example (cont)

. 1
e letu= , then for P, =107 = Eerfc(u) , we get u=3.3

Z|=

o

* Now when the signaling rate is doubled, the new value of P, is:

P = %erfc(%j

= %erfc(2.33) =10~

37
* The next source of bit errors in a baseband-pulse transmission
system that we wish to study is intersymbol interference (ISl),
which arises when the communication channel is dispersive.
Transmitted Signal Receive filter output
+1 if symbol by is 1 -
% =121 if symbol by is 0 T) = ; ag(t — kT) Mty = p }; asplt — kTy) + nit)
%E{r; . rrﬁ’;\‘istia . {a) T'fai?tser:‘it s(0) Ch?l(m)e" o0 x| Receive | 30~y pecision —-say Lif y(1,) >
(b} modulator g hle c) Sample at [—>=Say 0 if y(r;) <A
time 1; = iT},
White ’
Clock Gaussian Threshold A
pulses noise w(r)

Sampled filter output

I Transmitter t Channel t Receiver - yy = S aplli = kITe} + nie)
e ===

= pa, + p > aplli- RT,] + nit)
v 38
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4.4 Intersymbol Interference

* The receive filter output is written as

yit) = p >, awplt — kTy) + nif)
13

* where W is a scaling factor and the pulse p(t) is to be defined.

* The scaled pulse up(t) is obtained by a double convolution involving the
impulse response g(t) of the transmit filter, the impulse response h(t) of
the channel, and the impulse response c(t) of the receive filter, as shown

by:

up(t) = g(t) * h(t) * c(t)
* Inthe frequency domain, we get:

UP(f) = G(AH()C(S)

39

4.4 Intersymbol Interference

* The receive filter output y(t) is sampled at time t; = iT, (with i taking

on integer values), yielding:

Yt =u Y apli - BT + nit)
k=—m

= pa, 4

-~

Desired Signal

b 3 aplli- AT

Lot

+ nit))

7

N\

White Gaussian Noise

intersymbol interference

* How to deal with ISI ?

— Eliminate ISI by an appropriate pulse design

— Cancel ISI by equalizers

40
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4.5 Nyquist’s Criteria for Distortionless
Baseband Binary Transmission

yit) = > aplli — k¥Te} + nit)
==

= pa, + g Y, aplli- RIT,] =+ nit)

Keep a; at the sampling time t; l,

Eliminate the ISI at sampling
time t;

* Thus, we need to design the pulse p(t) such as:
L i=k Where p(0)=1

0, i#k
* Therefore, the receiver output y(t) will be:

p(T, —kT,)=

y(t,) = ua,

41

4.5 Nyquist’s Criteria in the Frequency
Domain

* Recall that sampling in the time domain produces periodicity
in the frequency domain.
* |n particular, we may write
Psf) = R, E Pif — nRy)  Where R,=1/T, is the bit rate in bits per second

* Ps(f) is the Fourier transform of an infinite periodic sequence
of delta functions of period T,, whose individual areas are
weighted by the respective sample values of p(t).

xxxxx

Py(f) = f,,‘ p(0) 8(t) exp(—j2mft) dt
= p(0)

42
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4.5 Nyquist’s Criteria in the Frequency
Domain

* Thus, Nyquist’s Criteria in the Frequency Domain is:

(o]

S, P(f-nR,)=T,

Nn=—oco

* Inthe time domain, the pulse should satisfy:

1L i=k
T —kT)=1
pUT, —KT,) {O,iik

4.5 ldeal Nyquist Channel

P

1
P(/)—{ﬁ* TWef<W 10
0, [fl>W sin(27Wt)
pit) =
- o rea{) 20Wi
2w N\ 2w = sinc(2Wr)
0.5
Ry
w=2+_b 7’
2WP(f) 37 2\ 1 ) 1 2 '3 7t,
1.0
Sampling instants
s [ N I B S I
1 0 1 W

Signaling intervals

0} 44
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4.5 ldeal Nyquist Channel

* A series of sinc pulses corresponding to the
sequence 1011010.

Binarysequence 1 0 1 1 0 1 O
l,OT

0.5

0.0

Amplitude

-101

Time 45

4.5 Practical difficulties of the Ideal
Nyquist Channel

1. Itrequires that the magnitude characteristic of P(f) be flat
from —W to W, and zero elsewhere. This is physically
unrealizable because of the abrupt transitions at the band
edges + W.

2. The function p(t) decreases as 1/t for large t, resulting in a
slow rate of decay. This is also caused by the discontinuity of
P(/) at + W. Accordingly, there is practically no margin of
error in sampling times in the receiver.

* Solution =» Raised Cosine Spectrum

46
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4.5 Raised Cosine Spectrum

We may overcome the practical difficulties encountered with the
ideal Nyquist channel by extending the bandwidth from the
minimum value W = R,/2 to an adjustable value between W and
2W.

We now specify the overall frequency response P(f) to satisfy a
condition more elaborate than that for the ideal Nyquist channel;
specifically, we retain three terms and restrict the frequency band
of interest to [—W , W], as shown by:

PUD+P(F=2W) 4 PU42W) =S, =W S f<W

47

4.5 Raised Cosine Spectrum

A particular form of P(f) that embodies many desirable features is
provided by a raised cosine spectrum. This frequency response
consists of a flat portion and a rolloff portion that has a sinusoidal
form, as follows:

., 0= Ifi<f
v =4 1 | mf] - W) = -
P(f) w{l - sm[—zw_ 7 ]} fi=fl<2W- £
0, [fl=2W - f

48
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4.5 Raised Cosine Spectrum

* The frequency parameter f;, and bandwidth W are related by

S

w

* The parameter a is called the rolloff factor; it indicates the excess
bandwidth over the ideal solution, W. Specifically, the transmission
bandwidth B is defined by:

a=1-

B, =2W-—f
=Wl+a)
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4.5 Raised Cosine Spectrum

— 0=|fl<
v W’ [l <fi

0.8 /,/ :i = 1 e _Ti(lfl - W) - —
%ﬁix/ 5 P(f) TW{] sm[ 2V =27, ]} fis | fl<2W-f
/ \ 0, |fl=2W - f,

L
1
2

. cos(2maWt)
o plt) = (smC(ZWt))(l——lm)

)
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4.5 Raised Cosine Spectrum

cos(2maWt) )
1 - 162W?t*

plt) = (sinc[th))(

* The time response p(t) consists of the product of two
factors:
— The factor sinc(2Wt) characterizing the ideal Nyquist channel
— A second factor that decreases as I/\t\? for large \t\.

* The first factor ensures zero crossings of p(t) at the desired
sampling instants of time t = iT with j an integer (positive
and negative).

* The second factor reduces the tails of the pulse
considerably below that obtained from the ideal Nyquist
channel, so that the transmission of binary waves using
such pulses is relatively insensitive to sampling time errors.

4.5 Raised Cosine: Example

Q) A computer puts out binary data at the rate of 56 kb/s. The
computer output is transmitted using a baseband binary PAM system
that is designed to have a raised-cosine spectrum. Determine the
transmission bandwidth required for each of the following rolloff
factors: a = 0.25, 1.0.

A) The transmission bandwidth of a raised cosine spectrum is
. . . Rb
B, =W(+a) , where W is the Nyquist channel bandwidth W = >
Then for the above case, W=28 kHz.
For a=0.25, BT=35 kHz.
For a=1, BT=56 kHz.
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Amplitude

4.7 Baseband M-ary PAM
Transmission

Output of a quaternary system

Binay 5 o 1 0 1 1 0 1 1 1

data
Representation of the 4 possible
+3 dibits, based on Gray encoding.
Dibit Amplitude
+1—
00 -3
t 01 -1
11 +1
1 10 +3
-3+
reon

(a) (b)
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4.7 Baseband M-ary PAM
Transmission

Binay 6 9 1 01 1 0 1 1 1

data

+3

Dibit Amplitude

o 4l —
k= 00 -3
= t 01 -1
g 11 +1
< 1 10 +3

3 —

QT:ZT,,L

(a) (b)
Consider then an M-ary PAM system with a signal alphabet that contains
M equally likely and statistically independent symbols, with the symbol duration
denoted by T seconds.
We refer to 1/T as the signaling rate of the system,
which is expressed in symbols per second, or bauds
T=T,1log,M
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4.7 Baseband M-ary PAM

Transmission

Therefore, in a given channel bandwidth, we find that by using an
M-ary PAM system, we are able to transmit information at a rate
that is log, M faster than the corresponding binary PAM system.

However, to realize the same average probability of symbol error,

an M-ary PAM system requires more transmitted power.

Specifically, we find that for M much larger than 2 and an average
probability of symbol error small compared to 1, the transmitted

power must be increased by the factor M?/log, M, compared

to a binary PAM system.

55

4.11 Eye Pattern

eye pattern, which is defined as the synchronized superposition of
all possible realizations of the signal of interest (e.g., received

signal, receiver output) viewed within a particular signaling interval.

Best
sampling
time
I Disto‘rtion.at
I /samplmg time

D

Slope = sensitivity
to timing error

Margin
over noise

Distortion of
zero-crossinngs

Time interval over which
the received signal can
be sampled
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4.11 Eye Pattern

The width of the eye opening defines the time interval over which the received
signal can be sampled without error from intersymbol interference; it is apparent
that the preferred time for sampling is the instant of time at which the eye is open
the widest.

The sensitivity of the system to timing errors is determined by the rate of closure
of the eye as the sampling time is varied.

The height of the eye opening, at a specified sampling time, defines the noise

margin of the system. Wixei

time
| Distortion at
/samplmg time

|
|
T
J D\
Slope = sensitivity | Margin
to timing error : _ over noise
|
Distortion of
zero-crossinngs
Time interval over which _
the received signal can 57
be sampled

Amplitude

Amplitude

Amplitude

4.11 Eye Pattern: Effect of channel
noise

(a) Eye diagram for noiseless quaternary system.

08 12
Normalized time o7,

(b) Eye diagram for quaternary system with SNR = 20 dB.

0 02 04 06 08 1 12 la 16 18
Normalized time 11T,

(c) Eye diagram for quaternary system with SNR = 10 dB.
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(a)

Amplitude

()

Amplitude

4.11 Eye Pattern: Effect of Bandwidth
Limitation

(a) Eye diagram for noiseless band-limited
quaternary system: cutoff frequency f, = 0.975 Hz.

1 12 14 16 18 2

0 02 04 06 08
Normalized time 1/7,

(b) Eye diagram for noiseless band-limited
quaternary system: cutoff frequency f, = 0.5 Hz.

e
0 02 04 06 08 1 1.2 1.8 2
Normalized time 1/7,,
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