Chapter 1 Communication Networks and Services

Network Architecture and Services Telephone Networks and Circuit Switching Computer Networks & Packet Switching

<section-header><section-header><section-header><list-item><list-item><list-item>

Communication Network Architecture

- *Network architecture:* the plan that specifies how the network is built and operated
- Architecture is driven by the network services
- Overall communication process is complex
- Network architecture partitions overall communication process into separate functional areas called *layers*
- Evolution of three network architectures: telegraph, telephone, and computer networks

Network Architecture Evolution

- Telegraph Networks
- Message switching & digital transmission
- Telephone Networks
- Circuit Switching
- Analog transmission \rightarrow digital transmission
- Mobile communications
- Internet
 - Packet switching & computer applications
- Next-Generation Internet
 - Multiservice packet switching network

Intelligence inside the network

Computer Network Evolution

- *1950s*: Telegraph technology adapted to computers
- 1960s: Dumb terminals access shared host computer
 - SABRE airline reservation system
- 1970s: Computers connect directly to each other
 - ARPANET packet switching network
 - TCP/IP internet protocols
 - Ethernet local area network
- 1980s & 1990s: New applications and Internet growth
 - Commercialization of Internet
 - E-mail, file transfer, web, P2P, ...
 - Internet traffic surpasses voice traffic

Elements of Computer Network Architecture

- Digital transmission
- Exchange of *frames* between adjacent equipment
- Framing and error control
- *Medium access control* regulates sharing of broadcast medium.
- Addresses identify attachment to network or internet.
- Transfer of *packets* across a packet network
- Distributed calculation of routing tables

Elements of Computer Network Architecture

- Congestion control inside the network
- Internetworking across multiple networks using routers
- Segmentation and reassembly of messages into packets at the ingress to and egress from a network or internetwork
- End-to-end transport protocols for process-to-process communications
- Applications that build on the transfer of messages between computers.
- Intelligence is at the edge of the network.

- Break long messages into multiple packets
- ARPANET testbed led to many innovations

Ethernet Medium Access Control

- Network interface card (NIC) connects workstation to LAN
- Each NIC has globally unique address
- Frames are broadcast into coaxial cable
- NICs listen to medium for frames with their address
- Transmitting NICs listen for collisions with other stations, and abort and reschedule retransmissions

The Internet

- Different network types emerged for data transfer between computers
- ARPA also explored packet switching using satellite and packet radio networks
- Each network has its protocols and is possibly built on different technologies
- Internetworking protocols required to enable communications between computers attached to *different* networks
- Internet: a network of networks

Internet Applications All Internet applications run on TCP or UDP TCP: HTTP (web); SMTP (e-mail); FTP (file transfer; telnet (remote terminal) UDP: DNS, RTP (voice & multimedia) TCP & UDP incorporated into computer

- TCP & UDP incorporated into computer operating systems
- Any application designed to operate over TCP or UDP will run over the Internet

Packet vs. Circuit Switching Architectures appear and disappear over time Telegraph (message switching) Telephone (circuit switching) Internet (packet switching)

- Trend towards packet switching at the edge
 - IP enables rapid introduction of new applications
 - New cellular voice networks packet-based
 - Soon IP will support *real-time* voice and telephone network will gradually be replaced
 - However, large packet flows easier to manage by circuit-like methods

Internet Protocol (IP)

- Routers (gateways) interconnect different networks
- Host computers prepare IP packets and transmit them over their attached network
- Routers forward IP packets across networks
- Best-effort IP transfer service, no retransmission

Multimedia Applications

- Trend towards digitization of all media
- Digital voice standard in cell phones
- Digital cameras replacing photography
- Video: digital storage and transmission
 - Analog VCR cassettes largely replaced by DVDs
 - Analog broadcast TV to be replaced by digital TV
 VCR cameras/recorders to be replaced by digital
 - video recorders and cameras
- High-quality network-based multimedia applications now feasible

More Versatile Signaling

• Signaling inside the network

- Connectionless packet switching keeps network simple & avoids large scale signaling complexity
- Large packet flows easier to manage using circuitlike methods that require signaling
- Optical paths also require signaling
- Generalized signaling protocols being developed
- End-to-End Signaling
 - Session-oriented applications require signaling between the endpoints (not inside the network)
 - Session Initiation Protocol taking off

Operation, Administration, and Maintenance (OAM)

- Communication like transportation networks
 - Traffic flows need to be monitored and controlled
 - Tolls have to be collected
 - Roads have to be maintained
 - Need to forecast traffic and plan network growth
- Highly-developed in telephone network
 - Entire organizations address OAM & Billing
 - · Becoming automated for flexibility & reduced cost
- Under development for IP networks

Transmission Technology

- Relentless improvement in transmission
- High-speed transmission in copper pairs
 DSL Internet Access
- Higher call capacity in cellular networks
 Lower cost cellular phone service
- Enormous capacity and reach in optical fiber
 - Plummeting cost for long distance telephone
- Faster and more information intensive applications

Processing Technology

- · Relentless improvement in processing & storage
- Moore's Law: doubling of transistors per integrated circuit every two years
- RAM: larger tables, larger systems
- Digital signal processing: transmission, multiplexing, framing, error control, encryption
- Network processors: hardware for routing, switching, forwarding, and traffic management
- Microprocessors: higher layer protocols and applications
- Higher speeds and higher throughputs in network protocols and applications